We report on new results of a search for two-photon interaction with axionlike particles (ALPs). The experiment was carried out at a synchrotron radiation facility using a light shining through a wall (LSW) technique. For this purpose, we have developed a novel pulsed-magnet system, composed of multiple racetrack-magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing vacuum with high intensity fields. The data obtained with a total of 27,676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass below 0.1 eV.