ﻻ يوجد ملخص باللغة العربية
In high Tc superconductors the magnetic and electronic properties are determined by the probability that valence electrons virtually jump from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favored by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic x-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.
Muon-spin rotation (muSR) studies of the oxygen isotope (^{16}O/^{18}O) effect (OIE) on the in-plane magnetic field penetration depth lambda_{ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE
The abstract of Phys. Rev. Lett. 121, 157001 (2018) claims to demonstrate, using ab initio computations, a new trend suggesting that the cuprates with stronger out-of-CuO$_{2}$-plane chemical bonding between the apical anion (O, Cl) and apical cation
Recent low-temperature scanning tunnelling spectroscopy experiments on the surface of BSCCO-2212 have revealed a strong positive correlation between the position of localized resonances at -960 meV identified with interstitial oxygen dopants and the
Comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is cr
We study oxygen K-edge x-ray absorption spectroscopy (XAS) and investigate the validity of the Zhang-Rice singlet (ZRS) picture in overdoped cuprate superconductors. Using large-scale exact diagonalization of the three-orbital Hubbard model, we obser