ﻻ يوجد ملخص باللغة العربية
We present the recent results of strangeness production at the mid-rapidity in Au + Au collisions at RHIC, from $sqrt{s_{rm NN}}$ = 7.7 to 200 GeV. The $v_2$ of multi-strange baryon $Omega$ and $phi$ mesons are similar to that of pions and protons in the intermediate $p_T$ range (2 - 5 GeV/$c$) in $sqrt{s_{rm NN}}$ = 200 GeV Au + Au collisions, indicating that the major part of collective flow has been built up at partonic stage. The breaking of mass ordering between $phi$ mesons and protons in the low $p_T$ range ($<$ 1 GeV/$c$) is consistent with a picture that $phi$ mesons are less sensitive to later hadronic interaction. The nuclear modification factor $R_{rm CP}$ and baryon to meson ratio change dramatically when the collision energy is lower than 19.6 GeV. It suggests a possible change of medium property of the system compared to those from high energies.
The production of $W$ bosons in polarized $p+p$ collisions at RHIC provides an excellent tool to probe the protons sea quark distributions. At leading order $W^{-(+)}$ bosons are produced in $bar{u}+d,(bar{d}+u)$ collisions, and parity-violating sing
STAR collected data in proton-proton collisions at sqrt(s)=200 GeV with transverse and longitudinal beam polarizations during the initial running periods in 2002--2004 at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. Results
We determine chemical freeze-out conditions from strangeness observables measured at RHIC beam energies. Based on a combined analysis of lowest-order net-Kaon fluctuations and strange anti-baryon over baryon yield ratios we obtain visibly enhanced fr
We report the energy and centrality dependence of dynamical kurtosis for Au + Au collisions at $sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV at RHIC. The dynamical kurtosis of net-proton is compared to that of total-proton. The results are also compared with AMPT model calculations.
We present STAR measurements of K^{0}_{S}, phi, Lambda, Xi, and Omega at mid-rapidity from Au+Au collisions at sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, and 39 GeV from the Beam Energy Scan (BES) program at the BNL Relativistic Heavy Ion Collider (RHIC). N