ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

117   0   0.0 ( 0 )
 نشر من قبل Shailesh Kumar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.



قيم البحث

اقرأ أيضاً

A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a functio n of the excitation power for both pure charge states, neutral and negatively charged, as well as for the photochromic state, where the center switches between both states at any power. A dedicated three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters, we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large extent dominated by that of the negative state, in agreement with the excess charge release of the negative center being much slower than the photon emission process.
Scalable realizations of quantum network technologies utilizing the nitrogen vacancy center in diamond require creation of optically coherent NV centers in close proximity to a surface for coupling to optical structures. We create single NV centers b y $^{15}$N ion implantation and high-temperature vacuum annealing. Origin of the NV centers is established by optically detected magnetic resonance spectroscopy for nitrogen isotope identification. Near lifetime-limited optical linewidths ($<$ 60 MHz) are observed for the majority of the normal-implant (7$^circ$, $approx$ 100 nm deep) $^{15}$NV centers. Long-term stability of the NV$^-$ charge state and emission frequency is demonstrated. The effect of NV-surface interaction is investigated by varying the implantation angle for a fixed ion-energy, and thus lattice damage profile. In contrast to the normal implant condition, NVs from an oblique-implant (85$^circ$, $approx$ 20 nm deep) exhibit substantially reduced optical coherence. Our results imply that the surface is a larger source of perturbation than implantation damage for shallow implanted NVs. This work supports the viability of ion implantation for formation of optically stable NV centers. However, careful surface preparation will be necessary for scalable defect engineering.
Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quant um networks. Here, we report on the fabrication of a (3.4 $pm$ 0.2) {mu}m thin, smooth (surface roughness r$_q$ < 0.4 nm over an area of 20 {mu}m by 30 {mu}m diamond membrane containing individually resolvable, narrow linewidth (< 100 MHz) NV centers. We fabricate this sample via a combination of high energy electron irradiation, high temperature annealing, and an optimized etching sequence found via a systematic study of the diamond surface evolution on the microscopic level in different etch chemistries. While our particular device dimensions are optimized for cavity-enhanced entanglement generation between distant NV centers in open, tuneable micro-cavities, our results have implications for a broad range of quantum experiments that require the combination of narrow optical transitions and {mu}m-scale device geometry.
We report on sensing stability of nanodiamond (ND) quantum sensors in various pH aqueous buffer solutions for the two detection schemes of quantum decoherence spectroscopy and thermometry. The electron spin properties of single nitrogen-vacancy (NV) centers in 25-nm-sized NDs have been characterized by a spin-measurement compatible perfusion (SMCP) chamber where observing the same individual NDs in different buffer solutions is possible. With this system, we have determined the stability of the NV quantum sensors during the pH change from 4 to 11 as the fluctuations of +- 12% and +- 0.2 MHz for the spin coherence time ($T_2$) and the resonance frequency ($omega_0$) of their mean values, which are comparable to the instrumental error of the measurement system. Here, we discuss the importance of characterizing the sensing stability during pH changes and how the present observations affect ND-based NV quantum sensing.
We present a simple and effective method of loading particles into an optical trap in air at atmospheric pressure. Material which is highly absorptive at the trapping laser wavelength, such as tartrazine dye, is used as media to attach photoluminesce nt diamond nanocrystals. The mix is burnt into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successfully loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to an excitation laser at 520~nm wavelength and the PL spectra of the optically trapped particles. This method provides a convenient technique for the study of the nitrogen-vacancy (NV) centers contained in optically trapped diamond nanocrystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا