ﻻ يوجد ملخص باللغة العربية
We show that topological phases should be realizable in readily available and well studied heterostructures. In particular we identify a new class of topological materials which are well known in spintronics: helical ferromagnet-superconducting junctions. We note that almost all previous work on topological heterostructures has focused on creating Majorana modes at the proximity interface in effectively two-dimensional or one-dimensional systems. The particular heterostructures we address exhibit finite range proximity effects leading to nodal superconductors with Majorana modes localized well away from this interface. To show this, we implement a Bogoliubov-de Gennes (BdG) proximity numerical scheme, which importantly, involves two finite dimensions in a three dimensional junction. Incorporating this level of numerical complexity serves to distinguish ours from alternative numerical BdG approaches which are limited by generally assuming translational invariance or periodic boundary conditions along multiple directions. With this access to the edges, we are then able to illustrate in a concrete fashion the wavefunctions of Majorana zero modes, and, moreover, address finite size effects. In the process we establish consistency with a simple analytical model.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals
The recent realization of pristine Majorana zero modes (MZMs) in vortices of iron-based superconductors (FeSCs) provides a promising platform for long-sought-after fault-tolerant quantum computation. A large topological gap between the MZMs and the l
We investigate the number-anomalous of the Majorana zero modes in the non-Hermitian Kitaev chain, whose hopping and superconductor paring strength are both imbalanced. We find that the combination of two imbalanced non-Hermitian terms can induce defe
Josephson radiation is a powerful method to probe Majorana zero modes in topological superconductors. Recently, Josephson radiation with half the Josephson frequency has been experimentally observed in a HgTe-based junction, possibly from Majorana ze
We study a superconductor-normal state-superconductor (SNS) Josephson junction along the edge of a quantum spin Hall insulator (QSHI) with a superconducting $pi$-phase across the junction. We solve self-consistently for the superconducting order para