ﻻ يوجد ملخص باللغة العربية
Compared with automatic speech recognition (ASR), the human auditory system is more adept at handling noise-adverse situations, including environmental noise and channel distortion. To mimic this adeptness, auditory models have been widely incorporated in ASR systems to improve their robustness. This paper proposes a novel auditory model which incorporates psychoacoustics and otoacoustic emissions (OAEs) into ASR. In particular, we successfully implement the frequency-dependent property of psychoacoustic models and effectively improve resulting system performance. We also present a novel double-transform spectrum-analysis technique, which can qualitatively predict ASR performance for different noise types. Detailed theoretical analysis is provided to show the effectiveness of the proposed algorithm. Experiments are carried out on the AURORA2 database and show that the word recognition rate using our proposed feature extraction method is significantly increased over the baseline. Given models trained with clean speech, our proposed method achieves up to 85.39% word recognition accuracy on noisy data.
The performances of automatic speech recognition (ASR) systems are usually evaluated by the metric word error rate (WER) when the manually transcribed data are provided, which are, however, expensively available in the real scenario. In addition, the
Modern Automatic Speech Recognition (ASR) systems can achieve high performance in terms of recognition accuracy. However, a perfectly accurate transcript still can be challenging to read due to disfluency, filter words, and other errata common in spo
In this paper, we propose MixSpeech, a simple yet effective data augmentation method based on mixup for automatic speech recognition (ASR). MixSpeech trains an ASR model by taking a weighted combination of two different speech features (e.g., mel-spe
Non-autoregressive (NAR) transformer models have been studied intensively in automatic speech recognition (ASR), and a substantial part of NAR transformer models is to use the casual mask to limit token dependencies. However, the casual mask is desig
This paper is focused on the finetuning of acoustic models for speaker adaptation goals on a given gender. We pretrained the Transformer baseline model on Librispeech-960 and conduct experiments with finetuning on the gender-specific test subsets and