ﻻ يوجد ملخص باللغة العربية
We report the inelastic light scattering studies on SmFeAsO0.65 and SmFeAsO0.77H0.12 with iron isotopes namely 54Fe and 57Fe. In both of these systems under investigation we observed a significant shift in the frequency of the phonon modes associated with the displacement of Fe atoms around ~ 200 cm-1. The observed shift in the Fe mode (B1g) for SmFeAsO0.65 is ~ 1.4 % and lower in case of SmFeAsO0.77H0.12, which is ~ 0.65 %, attributed to the lower percentage of isotopic substitution in case of SmFeAsO0.77H0.12. Our study reveals the significant iron isotope effect in these systems hinting towards the crucial role of electron-phonon coupling in the pairing mechanism of iron based superconductors.
We have theoretically explored the intrinsic spin Hall effect (SHE) in the iron-based superconductor family with a variety of materials. The study is motivated by an observation that, in addition to an appreciable spin-orbit coupling in the Fe 3d sta
We present a numerical study of the isotope effect on the angle resolved photoemission spectra (ARPES) in the undoped cuprates. By the systematic-error-free Diagrammatic Monte Carlo method, the Lehman spectral function of a single hole in the ttt-J m
Iron-based superconducting layered compounds have the second highest transition temperature after cuprate superconductors. Their discovery is a milestone in the history of high-temperature superconductivity and will have profound implications for hig
In a recent paper Yanagisawa et al. [1] claim from a theoretical analysis of a multi-channel multi-band superconductor model that an inverse isotope exponent on the superconducting transition temperature Tc can be realized in iron-based superconducto
High temperature superconductivity in iron pnictides and chalcogenides emerges when a magnetic phase is suppressed. The multi-orbital character and the strength of correlations underlie this complex phenomenology, involving magnetic softness and anis