ﻻ يوجد ملخص باللغة العربية
We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi/Ag/CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.
We report the observation of magnetoresistance (MR) originating from the orbital angular momentum transport (OAM) in a Permalloy (Py) / oxidized Cu (Cu*) heterostructure: the orbital Rashba-Edelstein magnetoresistance. The angular dependence of the M
Thanks to its unique symmetry, the unidirectional spin Hall and Rashba-Edelstein magnetoresistance (USRMR) is of great fundamental and practical interest, particularly in the context of reading magnetization states in two-terminal spin-orbit torque s
It is well known that a current driven through a two-dimensional electron gas with Rashba spin-orbit coupling induces a spin polarization in the perpendicular direction (Edelstein effect). This phenomenon has been extensively studied in the linear re
Rashba effect describes how electrons moving in an electric field experience a momentum dependent magnetic field that couples to the electron angular momentum (spin). This physical phenomenon permits the generation of spin polarization from charge cu
We have studied spin-orbit (SO) field in Ni$_{80}$Fe$_{20}$(Py)/W/Pt trilayer by means of spin-torque ferromagnetic resonance, and demonstrated that the W/Pt interface generates an extra SO field acting on the Py layer. This unprecedented field origi