ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for a Metallic Dangling-Bond Wire on $n$-doped H-passivated Semiconductor Surfaces

210   0   0.0 ( 0 )
 نشر من قبل Mads Engelund Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have theoretically investigated the electronic properties of neutral and $n$-doped dangling bond (DB) quasi-one-dimensional structures (lines) in the Si(001):H and Ge(001):H substrates with the aim of identifying atomic-scale interconnects exhibiting metallic conduction for use in on-surface circuitry. Whether neutral or doped, DB lines are prone to suffer geometrical distortions or have magnetic ground-states that render them semiconducting. However, from our study we have identified one exception -- a dimer row fully stripped of hydrogen passivation. Such a DB-dimer line shows an electronic band structure which is remarkably insensitive to the doping level and, thus, it is possible to manipulate the position of the Fermi level, moving it away from the gap. Transport calculations demonstrate that the metallic conduction in the DB-dimer line can survive thermally induced disorder, but is more sensitive to imperfect patterning. In conclusion, the DB-dimer line shows remarkable stability to doping and could serve as a one-dimensional metallic conductor on $n$-doped samples.



قيم البحث

اقرأ أيضاً

We evaluate the electronic, geometric and energetic properties of quasi 1-D wires formed by dangling bonds on Si(100)-H (2 x 1). The calculations are performed with density functional theory (DFT). Infinite wires are found to be insulating and Peierl s distorted, however finite wires develop localized electronic states that can be of great use for molecular-based devices. The ground state solution of finite wires does not correspond to a geometrical distortion but rather to an antiferromagnetic ordering. For the stability of wires, the presence of abundant H atoms in nearby Si atoms can be a problem. We have evaluated the energy barriers for intradimer and intrarow diffusion finding all of them about 1 eV or larger, even in the case where a H impurity is already sitting on the wire. These results are encouraging for using dangling-bond wires in future devices.
We perform electronic structure and quantum transport studies of dangling bond loops created on H-passivated Si(100) surfaces and connected to carbon nanoribbon leads. We model loops with straight and zigzag topologies as well as with varying lenght with an efficient density-functional based tight-binding electronic structure approach (DFTB) . Varying the length of the loop or the lead coupling position we induce the drastic change in the transmission due to the electron interference. Depending if the constructive or destructive interference within the loop takes place we can noticeably change transport properties by few orders of magnitude. These results propose a way to engineer the closed electronically driven nanocircuits with high transport properties and exploit the interference effects in order to control them.
The electronic structure of nanographene in pristine and fluorinated activated carbon fibers (ACFs) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) and compared with magnetic properties we reported on previously. In pri stine ACFs in which magnetic properties are governed by non-bonding edge states of the pi-electron, a pre-peak assigned to the edge state was observed below the conduction electron {pi}* peak close to the Fermi level in NEXAFS. Via the fluorination of the ACFs, an extra peak, which was assigned to the sigma-dangling bond state, was observed between the pre-peak of the edge state and the {pi}* peak in the NEXAFS profile. The intensities of the extra peak correlate closely with the spin concentration created upon fluorination. The combination of the NEXAFS and magnetic measurement results confirms the coexistence of the magnetic edge states of pi-electrons and dangling bond states of sigma-electrons on fluorinated nanographene sheets.
We present here a theory and a computational tool, Silicon-{sc Qnano}, to describe atomic scale quantum dots in Silicon. The methodology is applied to model dangling bond quantum dots (DBQDs) created on a passivated H:Si-(100)-(2$times$1) surface by removal of a Hydrogen atom. The electronic properties of DBQD are computed by embedding it in a computational box of Silicon atoms. The surfaces of the computational box were constructed by using DFT as implemented in {sc Abinit} program. The top layer was reconstructed by the formation of Si dimers passivated with H atoms while the bottom layer remained unreconstructed and fully saturated with H atoms. The computational box Hamiltonian was approximated by a tight-binding (TB) Hamiltonian by expanding the electron wave functions as a Linear Combination of Atomic Orbitals and fitting the bandstructure to {it ab-initio} results. The parametrized TB Hamiltonian was used to model large finite Si(100) boxes (slabs) with number of atoms exceeding present capabilities of {it ab-initio} calculations. The removal of one hydrogen atom from the reconstructed surface resulted in a DBQD state with wave function strongly localized around the Si atom and energy in the silicon bandgap. The DBQD could be charged with zero, one and two electrons. The Coulomb matrix elements were calculated and the charging energy of a two electron complex in a DBQD obtained.
246 - H. J. Xiang , Su-Huai Wei 2008
Density functional calculations are performed to investigate the room temperature ferromagnetism in GaN:Cu nanowires (NWs). Our results indicate that two Cu dopants are most stable when they are near each other. Compared to bulk GaN:Cu, we find that magnetization and ferromagnetism in Cu doped NWs is strongly enhanced because the band width of the Cu td band is reduced due to the 1D nature of the NW. The surface passivation is shown to be crucial to sustain the ferromagnetism in GaN:Cu NWs. These findings are in good agreement with experimental observations and indicate that ferromagnetism in this type of systems can be tuned by controlling the size or shape of the host materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا