ﻻ يوجد ملخص باللغة العربية
An analysis is presented of the expectations of the thermal model for particle production in collisions of small nuclei. The maxima observed in particle ratios of strange particles to pions as a function of beam energy in heavy ion collisions, are reduced when considering smaller nuclei. Of particular interest is the $Lambda/pi^+$ ratio shows the strongest maximum which survives even in collisions of small nuclei.
The dependence of particle production on the size of the colliding nuclei is analysed in terms of the thermal model using the canonical ensemble. The concept of strangeness correlation in clusters of sub-volume $V_c$ is used to account for the suppre
The so called number of hadron-nucleus collisions n_coll(b) at impact parameter b, and its integral value N_coll, which are used to normalize the measured fractional cross section of a hard process, are calculated within the Glauber-Gribov theory inc
We study the collision energy dependence of (anti-)deuteron and (anti-)triton production in the most central Au+Au collisions at $sqrt{s_mathrm{NN}}=$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV, using the nucleon coalescence model. The needed phase-sp
Light nuclei production in relativistic $^{197}$Au + $^{197}$Au collisions from 7.7 to 80 GeV is investigated within the Ultra-relativistic-Quantum-Molecular-Dynamics model (UrQMD) with a naive coalescence approach. The results of the production of l
The hot and dense matter generated in heavy-ion collisions contains intricate vortical structure in which the local fluid vorticity can be very large. Such vorticity can polarize the spin of the produced particles. We study the event-by-event generat