ﻻ يوجد ملخص باللغة العربية
Recent experiments have uncovered evidence of the strongly coupled nature of the graphene: the Wiedemann-Franz law is violated by up to a factor of 20 near the charge neutral point. We describe this strongly-coupled plasma by a holographic model in which there are two distinct conserved U(1) currents. We find that our analytic results for the transport coefficients for two current model have a significantly improved match to the density dependence of the experimental data than the models with only one current. The additive structure in the transports coefficients plays an important role. We also suggest the origin of the two currents.
The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system whose transport features a universal hydrodynamic description, even at room temperature. This quantum critical Dirac fluid is expected to have a she
Quantum decoherence is the loss of a systems purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon form
Negative magnetoresistivity is a special magnetotransport property associated with chiral anomaly in four dimensional chiral anomalous systems, which refers to the transport behavior that the DC longitudinal magnetoresistivity decreases with increasi
We study nonequilibrium steady states in a holographic superconductor under time periodic driving by an external rotating electric field. We obtain the dynamical phase diagram. Superconducting phase transition is of first or second order depending on
We study the spontaneous magnetization and the magnetic hysteresis using the gauge/gravity duality. We first propose a novel and general formula to compute the magnetization in a large class of holographic models. By using this formula, we compute th