ﻻ يوجد ملخص باللغة العربية
We consider waves radiated by a disturbance of oscillating strength moving at constant velocity along the free surface of a shear flow which, when undisturbed, has uniform horizontal vorticity of magnitude $S$. When no current is present the problem is a classical one and much studied, and in deep water a resonance is known to occur when $tau=|boldsymbol{V}|omega_0/g$ equals the critical value $1/4$ ($boldsymbol{V}$: velocity of disturbance, $omega_0$: oscillation frequency, $g$: gravitational acceleration). We show that the presence of the sub-surface shear current can change this picture radically. Not only does the resonant value of $tau$ depend strongly on the angle between $boldsymbol{V}$ and the currents direction and the shear-Froude number $mathrm{Frs}=|boldsymbol{V}|S/g$; when $mathrm{Frs}>1/3$, multiple resonant values --- as many as $4$ --- can occur for some directions of motion. At sufficiently large values of $mathrm{Frs}$, the smallest resonance frequency tends to zero, representing the phenomenon of critical velocity for ship waves. We provide a detailed analysis of the dispersion relation for the moving, oscillating disturbance, in both finite and infinite water depth, including for the latter case an overview of the different far-field waves which exist in different sectors of wave vector space under different conditions. Owing to the large number of parameters, a detailed discussion of the structure of resonances is provided for infinite depth only, where analytical results are available.
We investigate analytically the linearized water wave radiation problem for an oscillating submerged point source in an inviscid shear flow with a free surface. A constant depth is taken into account and the shear flow increases linearly with depth.
We report on progress on the free surface flow in the presence of submerged oscillating line sources (2D) or point sources (3D) when a simple shear flow is present varying linearly with depth. Such sources are in routine use as Green functions in the
The classic evolution equations for potential flow on the free surface of a fluid flow are not closed because the pressure and the vertical velocity dynamics are not specified on the free surface. Moreover, their wave dynamics does not cause circulat
We study the waves and wave-making forces acting on ships travelling on currents which vary as a function of depth. Our concern is realism; we consider a real current profile from the Columbia River, and model ships with dimensions and Froude numbers
We investigate the effects of a nearby free surface on the stability of a flexible plate in axial flow. Confinement by rigid boundaries is known to affect flag flutter thresholds and fluttering dynamics significantly, and this work considers the effe