ﻻ يوجد ملخص باللغة العربية
This work addresses decentralized online optimization in non-stationary environments. A network of agents aim to track the minimizer of a global time-varying convex function. The minimizer evolves according to a known dynamics corrupted by an unknown, unstructured noise. At each time, the global function can be cast as a sum of a finite number of local functions, each of which is assigned to one agent in the network. Moreover, the local functions become available to agents sequentially, and agents do not have a prior knowledge of the future cost functions. Therefore, agents must communicate with each other to build an online approximation of the global function. We propose a decentralized variation of the celebrated Mirror Descent, developed by Nemirovksi and Yudin. Using the notion of Bregman divergence in lieu of Euclidean distance for projection, Mirror Descent has been shown to be a powerful tool in large-scale optimization. Our algorithm builds on Mirror Descent, while ensuring that agents perform a consensus step to follow the global function and take into account the dynamics of the global minimizer. To measure the performance of the proposed online algorithm, we compare it to its offline counterpart, where the global functions are available a priori. The gap between the two is called dynamic regret. We establish a regret bound that scales inversely in the spectral gap of the network, and more notably it represents the deviation of minimizer sequence with respect to the given dynamics. We then show that our results subsume a number of results in distributed optimization. We demonstrate the application of our method to decentralized tracking of dynamic parameters and verify the results via numerical experiments.
In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The
To solve distributed optimization efficiently with various constraints and nonsmooth functions, we propose a distributed mirror descent algorithm with embedded Bregman damping, as a generalization of conventional distributed projection-based algorith
In this paper, we consider the problem of distributed online convex optimization, where a group of agents collaborate to track the global minimizers of a sum of time-varying objective functions in an online manner. Specifically, we propose a novel di
In this paper, we consider the problem of distributed online convex optimization, where a network of local agents aim to jointly optimize a convex function over a period of multiple time steps. The agents do not have any information about the future.
Mirror descent (MD) is a powerful first-order optimization technique that subsumes several optimization algorithms including gradient descent (GD). In this work, we study the exact convergence rate of MD in both centralized and distributed cases for