ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Online Optimization in Dynamic Environments Using Mirror Descent

124   0   0.0 ( 0 )
 نشر من قبل Shahin Shahrampour
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work addresses decentralized online optimization in non-stationary environments. A network of agents aim to track the minimizer of a global time-varying convex function. The minimizer evolves according to a known dynamics corrupted by an unknown, unstructured noise. At each time, the global function can be cast as a sum of a finite number of local functions, each of which is assigned to one agent in the network. Moreover, the local functions become available to agents sequentially, and agents do not have a prior knowledge of the future cost functions. Therefore, agents must communicate with each other to build an online approximation of the global function. We propose a decentralized variation of the celebrated Mirror Descent, developed by Nemirovksi and Yudin. Using the notion of Bregman divergence in lieu of Euclidean distance for projection, Mirror Descent has been shown to be a powerful tool in large-scale optimization. Our algorithm builds on Mirror Descent, while ensuring that agents perform a consensus step to follow the global function and take into account the dynamics of the global minimizer. To measure the performance of the proposed online algorithm, we compare it to its offline counterpart, where the global functions are available a priori. The gap between the two is called dynamic regret. We establish a regret bound that scales inversely in the spectral gap of the network, and more notably it represents the deviation of minimizer sequence with respect to the given dynamics. We then show that our results subsume a number of results in distributed optimization. We demonstrate the application of our method to decentralized tracking of dynamic parameters and verify the results via numerical experiments.



قيم البحث

اقرأ أيضاً

In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The objective and constraint functions are revealed locally to the nodes, at each time, after taking an action. Naturally, the constraints cannot be instantaneously satisfied. Therefore, we reformulate the problem to satisfy these constraints in the long term. To this end, we propose a distributed primal-dual mirror descent based approach, in which the primal and dual updates are carried out locally at all the nodes. This is followed by sharing and mixing of the primal variables by the local nodes via communication with the immediate neighbors. To quantify the performance of the proposed algorithm, we utilize the challenging, but more realistic metrics of dynamic regret and fit. Dynamic regret measures the cumulative loss incurred by the algorithm, compared to the best dynamic strategy. On the other hand, fit measures the long term cumulative constraint violations. Without assuming the restrictive Slaters conditions, we show that the proposed algorithm achieves sublinear regret and fit under mild, commonly used assumptions.
To solve distributed optimization efficiently with various constraints and nonsmooth functions, we propose a distributed mirror descent algorithm with embedded Bregman damping, as a generalization of conventional distributed projection-based algorith ms. In fact, our continuous-time algorithm well inherits good capabilities of mirror descent approaches to rapidly compute explicit solutions to the problems with some specific constraint structures. Moreover, we rigorously prove the convergence of our algorithm, along with the boundedness of the trajectory and the accuracy of the solution.
In this paper, we consider the problem of distributed online convex optimization, where a group of agents collaborate to track the global minimizers of a sum of time-varying objective functions in an online manner. Specifically, we propose a novel di stributed online gradient descent algorithm that relies on an online adaptation of the gradient tracking technique used in static optimization. We show that the dynamic regret bound of this algorithm has no explicit dependence on the time horizon and, therefore, can be tighter than existing bounds especially for problems with long horizons. Our bound depends on a new regularity measure that quantifies the total change in the gradients at the optimal points at each time instant. Furthermore, when the optimizer is approximatly subject to linear dynamics, we show that the dynamic regret bound can be further tightened by replacing the regularity measure that captures the path length of the optimizer with the accumulated prediction errors, which can be much lower in this special case. We present numerical experiments to corroborate our theoretical results.
In this paper, we consider the problem of distributed online convex optimization, where a network of local agents aim to jointly optimize a convex function over a period of multiple time steps. The agents do not have any information about the future. Existing algorithms have established dynamic regret bounds that have explicit dependence on the number of time steps. In this work, we show that we can remove this dependence assuming that the local objective functions are strongly convex. More precisely, we propose a gradient tracking algorithm where agents jointly communicate and descend based on corrected gradient steps. We verify our theoretical results through numerical experiments.
Mirror descent (MD) is a powerful first-order optimization technique that subsumes several optimization algorithms including gradient descent (GD). In this work, we study the exact convergence rate of MD in both centralized and distributed cases for strongly convex and smooth problems. We view MD with a dynamical system lens and leverage quadratic constraints (QCs) to provide convergence guarantees based on the Lyapunov stability. For centralized MD, we establish a semi-definite programming (SDP) that certifies exponentially fast convergence of MD subject to a linear matrix inequality (LMI). We prove that the SDP always has a feasible solution that recovers the optimal GD rate. Next, we analyze the exponential convergence of distributed MD and characterize the rate using two LMIs. To the best of our knowledge, the exact (exponential) rate of distributed MD has not been previously explored in the literature. We present numerical results as a verification of our theory and observe that the richness of the Lyapunov function entails better (worst-case) convergence rates compared to existing works on distributed GD.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا