ﻻ يوجد ملخص باللغة العربية
Within the field of image and video recognition, the traditional approach is a dataset split into fixed training and test partitions. However, the labelling of the training set is time-consuming, especially as datasets grow in size and complexity. Furthermore, this approach is not applicable to the home user, who wants to intuitively group their media without tirelessly labelling the content. Our interactive approach is able to iteratively cluster classes of images and video. Our approach is based around the concept of an image signature which, unlike a standard bag of words model, can express co-occurrence statistics as well as symbol frequency. We efficiently compute metric distances between signatures despite their inherent high dimensionality and provide discriminative feature selection, to allow common and distinctive elements to be identified from a small set of user labelled examples. These elements are then accentuated in the image signature to increase similarity between examples and pull correct classes together. By repeating this process in an online learning framework, the accuracy of similarity increases dramatically despite labelling only a few training examples. To demonstrate that the approach is agnostic to media type and features used, we evaluate on three image datasets (15 scene, Caltech101 and FG-NET), a mixed text and image dataset (ImageTag), a dataset used in active learning (Iris) and on three action recognition datasets (UCF11, KTH and Hollywood2). On the UCF11 video dataset, the accuracy is 86.7% despite using only 90 labelled examples from a dataset of over 1200 videos, instead of the standard 1122 training videos. The approach is both scalable and efficient, with a single iteration over the full UCF11 dataset of around 1200 videos taking approximately 1 minute on a standard desktop machine.
An ever increasing amount of our digital communication, media consumption, and content creation revolves around videos. We share, watch, and archive many aspects of our lives through them, all of which are powered by strong video compression. Traditi
We report on CMU Informedia Labs system used in Googles YouTube 8 Million Video Understanding Challenge. In this multi-label video classification task, our pipeline achieved 84.675% and 84.662% GAP on our evaluation split and the official test set. W
Pursuing realistic results according to human visual perception is the central concern in the image transformation tasks. Perceptual learning approaches like perceptual loss are empirically powerful for such tasks but they usually rely on the pre-tra
We propose to leverage a generic object tracker in order to perform object mining in large-scale unlabeled videos, captured in a realistic automotive setting. We present a dataset of more than 360000 automatically mined object tracks from 10+ hours o
Modeling temporal visual context across frames is critical for video instance segmentation (VIS) and other video understanding tasks. In this paper, we propose a fast online VIS model named CrossVIS. For temporal information modeling in VIS, we prese