ﻻ يوجد ملخص باللغة العربية
When a gain system is coupled to a loss system, the energy usually flows from the gain system to the loss one. We here present a counterintuitive theory for the ground-state cooling of the mechanical resonator in optomechanical system via a gain cavity. The energy flows first from the mechanical resonator into the loss cavity, then into the gain cavity, and finally localizes there. The energy localization in the gain cavity dramatically enhances the cooling rate of the mechanical resonator. Moreover, we show that unconventional optical spring effect, e.g., giant frequency shift and optically induced damping of the mechanical resonator, can be realized. Those feature a pre-cooling free ground-state cooling, i.e., the mechanical resonator in thermal excitation at room temperature can directly be cooled to its ground state. This cooling approach has the potential application for fundamental tests of quantum physics without complicated cryogenic setups.
We propose to realize the ground state cooling of magnomechanical resonator in a parity-time (PT)-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonato
Quantum manipulation of coupled mechanical resonators has become an important research topic in optomechanics because these systems can be used to study the quantum coherence effects involving multiple mechanical modes. A prerequisite for observing m
Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali vapour Raman memories combine high-bandwidth storage, on-demand read-out, and operation at room temperature without collis
We propose an optimization scheme for ground-state cooling of a mechanical mode by coupling to a general three-level system. We formulate the optimization scheme, using the master equation approach, over a broad range of system parameters including d
A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-op