ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Self-Stabilizing Mobile Byzantine-Tolerant Regular Register with bounded timestamp

171   0   0.0 ( 0 )
 نشر من قبل Antonella Del Pozzo
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Silvia Bonomi




اسأل ChatGPT حول البحث

This paper proposes the first implementation of a self-stabilizing regular register emulated by $n$ servers that is tolerant to both mobile Byzantine agents, and emph{transient failures} in a round-free synchronous model. Differently from existing Mobile Byzantine tolerant register implementations, this paper considers a more powerful adversary where (i) the message delay (i.e., $delta$) and the period of mobile Byzantine agents movement (i.e., $Delta$) are completely decoupled and (ii) servers are not aware of their state i.e., they do not know if they have been corrupted or not by a mobile Byzantine agent.The proposed protocol tolerates emph{(i)} any number of transient failures, and emph{(ii)} up to $f$ Mobile Byzantine agents. In addition, our implementation uses bounded timestamps from the $mathcal{Z}_{13}$ domain and it is optimal with respect to the number of servers needed to tolerate $f$ mobile Byzantine agents in the given model.



قيم البحث

اقرأ أيضاً

Gathering is a fundamental coordination problem in cooperative mobile robotics. In short, given a set of robots with arbitrary initial locations and no initial agreement on a global coordinate system, gathering requires that all robots, following the ir algorithm, reach the exact same but not predetermined location. Gathering is particularly challenging in networks where robots are oblivious (i.e., stateless) and direct communication is replaced by observations on their respective locations. Interestingly any algorithm that solves gathering with oblivious robots is inherently self-stabilizing if no specific assumption is made on the initial distribution of the robots. In this paper, we significantly extend the studies of de-terministic gathering feasibility under different assumptions This manuscript considerably extends preliminary results presented as an extended abstract at the DISC 2006 conference [7]. The current version is under review at Distributed Computing Journal since February 2012 (in a previous form) and since 2014 in the current form. The most important results have been also presented in MAC 2010 organized in Ottawa from August 15th to 17th 2010 related to synchrony and faults (crash and Byzantine). Unlike prior work, we consider a larger set of scheduling strategies, such as bounded schedulers. In addition, we extend our study to the feasibility of probabilistic self-stabilizing gathering in both fault-free and fault-prone environments.
We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo usly known self-stabilizing asynchronous MST algorithms by a multiplicative factor $Theta(n)$, to the price of increasing the best known space complexity by a factor $O(log n)$. The main ingredient used in our algorithm is the design, for the first time in self-stabilizing settings, of a labeling scheme for computing the nearest common ancestor with only $O(log^2n)$ bits.
123 - Silvia Bonomi 2015
This paper proposes the first implementation of an atomic storage tolerant to mobile Byzantine agents. Our implementation is designed for the round-based synchronous model where the set of Byzantine nodes changes from round to round. In this model we explore the feasibility of multi-writer multi-reader atomic register prone to various mobile Byzantine behaviors. We prove upper and lower bounds for solving the atomic storage in all the explored models. Our results, significantly different from the static case, advocate for a deeper study of the main building blocks of distributed computing while the system is prone to mobile Byzantine failures.
Given a boolean predicate $Pi$ on labeled networks (e.g., proper coloring, leader election, etc.), a self-stabilizing algorithm for $Pi$ is a distributed algorithm that can start from any initial configuration of the network (i.e., every node has an arbitrary value assigned to each of its variables), and eventually converge to a configuration satisfying $Pi$. It is known that leader election does not have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for some networks, some of their nodes must have registers whose sizes grow with the size $n$ of the networks. On the other hand, it is also known that leader election can be solved by a deterministic self-stabilizing algorithm using registers of $O(log log n)$ bits per node in any $n$-node bounded-degree network. We show that this latter space complexity is optimal. Specifically, we prove that every deterministic self-stabilizing algorithm solving leader election must use $Omega(log log n)$-bit per node registers in some $n$-node networks. In addition, we show that our lower bounds go beyond leader election, and apply to all problems that cannot be solved by anonymous algorithms.
In this paper we prove lower and matching upper bounds for the number of servers required to implement a regular shared register that tolerates unsynchronized Mobile Byzantine failures. We consider the strongest model of Mobile Byzantine failures to date: agents are moved arbitrarily by an omniscient adversary from a server to another in order to deviate their computation in an unforeseen manner. When a server is infected by an Byzantine agent, it behaves arbitrarily until the adversary decides to move the agent to another server. Previous approaches considered asynchronous servers with synchronous mobile Byzantine agents (yielding impossibility results), and synchronous servers with synchronous mobile Byzantine agents (yielding optimal solutions for regular register implementation, even in the case where servers and agents periods are decoupled). We consider the remaining open case of synchronous servers with unsynchronized agents, that can move at their own pace, and change their pace during the execution of the protocol. Most of our findings relate to lower bounds, and characterizing the model parameters that make the problem solvable. It turns out that unsynchronized mobile Byzantine agent movements requires completely new proof arguments, that can be of independent interest when studying other problems in this model. Additionally, we propose a generic server-based algorithm that emulates a regular register in this model, that is tight with respect to the number of mobile Byzantine agents that can be tolerated. Our emulation spans two awareness models: servers with and without self-diagnose mechanisms. In the first case servers are aware that the mobile Byzantine agent has left and hence they can stop running the protocol until they recover a correct state while in the second case, servers are not aware of their faulty state and continue to run the protocol using an incorrect local state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا