ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9<z<5.5 using photometric redshift Probability Distribution Functions

58   0   0.0 ( 0 )
 نشر من قبل Viola Allevato
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$leq$z$leq$5.5 ($langle L_{bol} rangle sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $sigma_z$ = 0.052 of our sample at z$geq$2.9. Once we integrate the projected 2pcf up to $pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only a slight increase of the bias factor of COSMOS AGN at z$gtrsim$3 with the typical hosting halo mass of moderate luminosity AGN almost constant with redshift and equal to logM$_h$ = 12.92$^{+0.13}_{-0.18}$ at z=2.8 and log M$_h$ = 12.83$^{+0.12}_{-0.11}$ at z$sim$3.4, respectively. The observed redshift evolution of the bias of COSMOS AGN implies that moderate luminosity AGN still inhabit group-sized halos at z$gtrsim$3, but slightly less massive than observed in different independent studies using X-ray AGN at z$leq2$.



قيم البحث

اقرأ أيضاً

The existence of a large population of Compton thick (CT, $N_{H}>10^{24} cm^{-2}$) AGN is a key ingredient of most Cosmic X-ray background synthesis models. However, direct identification of these sources, especially at high redshift, is difficult du e to the flux suppression and complex spectral shape produced by CT obscuration. We explored the Chandra COSMOS Legacy point source catalog, comprising 1855 sources, to select via X-ray spectroscopy, a large sample of CT candidates at high redshift. Adopting a physical model to reproduce the toroidal absorber, and a Monte-Carlo sampling method, we selected 67 individual sources with >5% probability of being CT, in the redshift range $0.04<z<3.5$. The sum of the probabilities above $N_{H}>10^{24} cm^{-2}$, gives a total of 41.9 effective CT, corrected for classification bias. We derive number counts in the 2-10 keV band in three redshift bins. The observed logN-logS is consistent with an increase of the intrinsic CT fraction ($f_{CT}$) from $sim0.30$ to $sim0.55$ from low to high redshift. When rescaled to a common luminosity (log(L$_{rm X}$/erg/s)$=44.5$) we find an increase from $f_{CT}=0.19_{-0.06}^{+0.07}$ to $f_{CT}=0.30_{-0.08}^{+0.10}$ and $f_{CT}=0.49_{-0.11}^{+0.12}$ from low to high z. This evolution can be parametrized as $f_{CT}=0.11_{-0.04}^{+0.05}(1+z)^{1.11pm0.13}$. Thanks to HST-ACS deep imaging, we find that the fraction of CT AGN in mergers/interacting systems increases with luminosity and redshift and is significantly higher than for non-CT AGN hosts.
We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. 38% of the sources are optically classified Type 1 active galactic nuclei (AGN) , 60% are Type 2 AGN and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index and of the intrinsic absorption N(H,z) based on the sources optical classification: Type 1 have a slightly steeper mean photon index than Type 2 AGN, which on the other hand have average intrinsic absorption ~3 times higher than Type 1 AGN. We find that ~15% of Type 1 AGN have N(H,z)>1E22 cm^(-2), i.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have L(2-10keV)>$1E44 erg/s. The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being for example caused by dust-free material surrounding the inner part of the nuclei. ~18% of Type 2 AGN have N(H,z)<1E22 cm^(-2), and most of these sources have low X-ray luminosities (L(2-10keV)<$1E43 erg/s). We expect a part of these sources to be low-accretion, unobscured AGN lacking of broad emission lines. Finally, we also find a direct proportional trend between N(H,z) and host galaxy mass and star formation rate, although part of this trend is due to a redshift selection effect.
We present the largest high-redshift (3<z<6.85) sample of X-ray-selected active galactic nuclei (AGN) on a contiguous field, using sources detected in the Chandra COSMOS Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift, the other 87 with photometric redshift (z_phot). In this work we treat z_phot as a probability weighted sum of contributions, adding to our sample the contribution of sources with z_phot<3 but z_phot probability distribution >0 at z>3. We compute the number counts in the observed 0.5-2 keV band, finding a decline in the number of sources at z>3 and constraining phenomenological models of X-ray background. We compute the AGN space density at z>3 in two different luminosity bins. At higher luminosities (logL(2-10 keV) > 44.1 erg/s) the space density declines exponentially, dropping by a factor ~20 from z~3 to z~6. The observed decline is ~80% steeper at lower luminosities (43.55 erg/s < logL(2-10 keV) < 44.1 erg/s), from z~3 to z~4.5. We study the space density evolution dividing our sample in optically classified Type 1 and Type 2 AGN. At logL(2-10 keV) > 44.1 erg/s, unobscured and obscured objects may have different evolution with redshift, the obscured component being three times higher at z~5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGN. These models significantly overpredict the number of expected AGN at logL(2-10 keV) > 44.1 erg/s with respect to our data.
193 - S. Marchesi , F. Civano , M. Elvis 2015
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 square degrees of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the prev ious C-COSMOS survey. In this Paper we report the i, K, and 3.6 micron identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 micron information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift towards faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGN and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.
We present the first clustering results of X-ray selected AGN at z~3. Using Chandra X-ray imaging and UVR optical colors from MUSYC photometry in the ECDF-S field, we selected a sample of 58 z~3 AGN candidates. From the optical data we also selected 1385 LBG at 2.8<z< 3.8 with R<25.5. We performed auto-correlation and cross-correlation analyses, and here we present results for the clustering amplitudes and dark matter halo masses of each sample. For the LBG we find a correlation length of r_0,LBG = 6.7 +/- 0.5 Mpc, implying a bias value of 3.5 +/- 0.3 and dark matter (DM) halo masses of log(Mmin/Msun) = 11.8 +/- 0.1. The AGN-LBG cross-correlation yields r_0,AGN-LBG = 8.7 +/- 1.9 Mpc, implying for AGN at 2.8<z<3.8 a bias value of 5.5 +/- 2.0 and DM halo masses of log(Mmin/Msun) = 12.6 +0.5/-0.8. Evolution of dark matter halos in the Lambda CDM cosmology implies that today these z~3 AGN are found in high mass galaxies with a typical luminosity of 7+4/-2 L*.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا