ﻻ يوجد ملخص باللغة العربية
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of solitons is governed by a nonlinear Bloch equation. The spin dynamics influences the orbital motion of the solitons leading to the spin-orbit effects in the dynamics of the macroscopic quantum objects (mean-field solitons). The latter perform oscillations with a frequency determined by the SOC, Raman coupling, and intrinsic nonlinearity. These findings reveal unique features of solitons affected by the SOC, which is confirmed by analytical considerations and numerical simulations of the underlying Gross-Pitaevskii equations.
We theoretically investigate the dynamics of modulation instability (MI) in two-dimensional spin-orbit coupled Bose-Einstein condensates (BECs). The analysis is performed for equal densities of pseudo-spin components. Different combination of the sig
We present OpenMP version of a Fortran program for solving the Gross-Pitaevskii equation for a harmonically trapped three-component rotating spin-1 spinor Bose-Einstein condensate (BEC) in two spatial dimensions with or without spin-orbit (SO) and Ra
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condens
We study the dynamics of binary Bose-Einstein condensates made of ultracold and dilute alkali-metal atoms in a quasi-one-dimensional setting. Numerically solving the two coupled Gross-Pitaevskii equations which accurately describe the system dynamics
A simple and efficient method to create gap solitons is proposed in a spin-orbit-coupled spin-1 Bose-Einstein condensate. We find that a free expansion along the spin-orbit coupling dimension can generate two moving gap solitons, which are identified