ﻻ يوجد ملخص باللغة العربية
We study the magnetic coupling between different ferromagnetic metals (FMs) across a graphene (G) layer, and the role of graphene as a thin covalent spacer. Starting with G grown on a FM substrate (Ni or Co), we deposit on top at room temperature different FM metals (Fe, Ni, Co). By measuring the dichroic effect of 3p photoemission lines we detect the magnetization of the substrate and the sign of the exchange coupling in FM overlayer at room temperature. We show that the G layer magnetically decouples the FM metals.
Graphene is expected to complement todays Si-based information technology. In particular, magnetic molecules in contact with graphene constitute a tantalizing approach towards organic spin electronics because of the reduced conductivity mismatch at t
It is generally believed that Veselagos criterion for negative refraction cannot be fulfilled in natural materials. However, considering imaginary parts of the permittivity ({epsilon}) and permeability ({mu}) and for metals at not too high frequencie
The revealing properties of transition metal (T)-doped graphene systems are investigated with the use of the first-principles method. The detailed calculations cover the bond length, position and height of adatoms, binding energy, atom-dominated band
We theoretically design a graphene-based all-organic ferromagnetic semiconductor by terminating zigzag graphene nanoribbons (ZGNRs) with organic magnets. A large spin-split gap with 100% spin polarized density of states near the Fermi energy is obtai
We study the effects of metallic doping on the electronic properties of graphene using density functional theory in the local density approximation in the presence of a local charging energy (LDA+U). The electronic properties are sensitive to whether