ﻻ يوجد ملخص باللغة العربية
We study the weak Lefschetz property of artinian Gorenstein algebras and in particular of artinian complete intersections. In codimension four and higher, it is an open problem whether all complete intersections have the weak Lefschetz property. For a given artinian Gorenstein algebra $A$ we ask what linear forms are Lefschetz elements for this particular algebra, i.e., which linear forms $ell$ give maximal rank for all the multiplication maps $times ell: [A]_i longrightarrow [A]_{i+1}$. This is a Zariski open set and its complement is the emph{non-Lefschetz locus}. For monomial complete intersections, we completely describe the non-Lefschetz locus. For general complete intersections of codimension three and four we prove that the non-Lefschetz locus has the expected codimension, which in particular means that it is empty in a large family of examples. For general Gorenstein algebras of codimension three with a given Hilbert function, we prove that the non-Lefschetz locus has the expected codimension if the first difference of the Hilbert function is of decreasing type. For completeness we also give a full description of the non-Lefschetz locus for artinian algebras of codimension two.
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the
Given an ideal $I=(f_1,ldots,f_r)$ in $mathbb C[x_1,ldots,x_n]$ generated by forms of degree $d$, and an integer $k>1$, how large can the ideal $I^k$ be, i.e., how small can the Hilbert function of $mathbb C[x_1,ldots,x_n]/I^k$ be? If $rle n$ the sma
Let $Z$ be a closed subscheme of a smooth complex projective variety $Ysubseteq Ps^N$, with $dim,Y=2r+1geq 3$. We describe the intermediate Neron-Severi group (i.e. the image of the cycle map $A_r(X)to H_{2r}(X;mathbb{Z})$) of a general smooth hypers
The Noether-Lefschetz theorem asserts that any curve in a very general surface $X$ in $mathbb P^3$ of degree $d geq 4$ is a restriction of a surface in the ambient space, that is, the Picard number of $X$ is $1$. We proved previously that under some
A finitely generated module over a commutative noetherian ring of finite Krull dimension can be built from the prime ideals in the singular locus by iteration of three procedures: taking extensions, direct summands, and cosyzygies. In 2003 Schoutens