ترغب بنشر مسار تعليمي؟ اضغط هنا

G64-12 and G64-37 are Carbon-Enhanced Metal-Poor Stars

66   0   0.0 ( 0 )
 نشر من قبل Vinicius Placco
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new high-resolution chemical-abundance analyses for the well-known high proper-motion subdwarfs G64-12 and G64-37, based on very high signal-to-noise spectra (S/N ~ 700/1) with resolving power R ~ 95,000. These high-quality data enable the first reliable determination of the carbon abundances for these two stars; we classify them as carbon-enhanced metal-poor (CEMP) stars based on their carbonicities, which both exceed [C/Fe] = +1.0. They are sub-classified as CEMP- no Group-II stars, based on their location in the Yoon-Beers diagram of absolute carbon abundance, A(C) vs. [Fe/H], as well as on the conventional diagnostic [Ba/Fe]. The relatively low absolute carbon abundances of CEMP-no stars, in combination with the high effective temperatures of these two stars (Teff ~ 6500 K) weakens their CH molecular features to the point that accurate carbon abundances can only be estimated from spectra with very high S/N. A comparison of the observed abundance patterns with the predicted yields from massive, metal-free supernova models reduces the inferred progenitor masses by factors of ~ 2-3, and explosion energies by factors of ~ 10-15, compared to those derived using previously claimed carbon abundance estimates. There are certainly many more warm CEMP-no stars near the halo main-sequence turnoff that have been overlooked in past studies, directly impacting the derived frequencies of CEMP-no stars as a function of metallicity, a probe that provides important constraints on Galactic chemical evolution models, the initial mass function in the early Universe, and first-star nucleosynthesis.



قيم البحث

اقرأ أيضاً

Mixing and fallback models in faint supernova models are supposed to reproduce the abundance patterns of observed carbon-enhanced metal-poor (CEMP) stars in the Galactic halo. A fine tuning of the model parameters for individual stars is required to reproduce the observed ratios of carbon to iron. We focus on extremely metal-poor stars formed out of the ejecta from the mixing and fallback models using a chemical evolution model. Our chemical evolution models take into account the contribution of individual stars to chemical enrichment in host halos together with their evolution in the context of the hierarchical clustering. Parametrized models of mixing and fallback models for Pop. III faint supernovae are implemented in the chemical evolution models with merger trees to reproduce the observed CEMP stars. A variety of choices for model parameters on star formation and metal-pollution by faint supernovae is unable to reproduce the observed stars with [Fe/H] < -4 and [C/H] > -2, which are the majority of CEMP stars among the lowest metallicity stars. Only possible solution is to form stars from small ejecta mass, which produces an inconsistent metallicity distribution function. We conclude that not all the CEMP stars are explicable by the mixing and fallback models. We also tested the contribution of binary mass transfers from AGB stars that are also supposed to reproduce the abundances of known CEMP stars. This model reasonably reproduces the distribution of carbon and iron abundances simultaneously only if we assume that long-period binaries are favored at [Fe/H] < -3.5.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which 7 Carbon-Enhanced Metal-Poor (CEMP) stars and 6 CH stars. All stars but one show clear evid ence for binarity. New orbits are obtained for 8 systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very low-mass companion, or of regular envelope pulsations. The period - eccentricity (P - e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5 - 0.7 Msun, indicative of white-dwarf companions, adopting 0.8 - 0.9 Msun for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their higher-metallicity analogs, the barium stars. The P - e diagrams of barium, CH and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P < 1000 d) and mostly circular or almost circular orbits, and another with longer-period and eccentric (e > 0.1) orbits.
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich mate rial from a thermally-pulsing asymptotic giant branch (TPAGB) primary star to a less massive main-sequence companion which is seen today. Recent studies explore the possibility that an initial mass function biased toward intermediate-mass stars is required to reproduce the observed CEMP fraction in stars with metallicity [Fe/H] < -2.5. These models also implicitly predict a large number of nitrogen-enhanced metal-poor (NEMP) stars which is not seen. We investigate whether the observed CEMP and NEMP to extremely metal-poor (EMP) ratios can be explained without invoking a change in the initial mass function. We confirm earlier findings that with current detailed TPAGB models the large observed CEMP fraction cannot be accounted for. We find that efficient third dredge up in low-mass (less than 1.25Msun), low-metallicity stars may offer at least a partial explanation to the large observed CEMP fraction while remaining consistent with the small observed NEMP fraction.
142 - T. Masseron 2009
By considering the various CEMP subclasses separately, we try to derive, from the specific signatures imprinted on the abundances, parameters (such as metallicity, mass, temperature, and neutron source) characterizing AGB nucleosynthesis from the spe cific signatures imprinted on the abundances, and separate them from the impact of thermohaline mixing, first dredge-up, and dilution associated with the mass transfer from the companion.To put CEMP stars in a broad context, we collect abundances for about 180 stars of various metallicities, luminosity classes, and abundance patterns, from our own sample and from literature. First, we show that there are CEMP stars which share the properties of CEMP-s stars and CEMP-no stars (which we call CEMP-low-s stars). We also show that there is a strong correlation between Ba and C abundances in the s-only CEMP stars. This strongly points at the operation of the 13C neutron source in low-mass AGB stars. For the CEMP-rs stars (seemingly enriched with elements from both the s- and r-processes), the correlation of the N abundances with abundances of heavy elements from the 2nd and 3rd s-process peaks bears instead the signature of the 22Ne neutron source. Adding the fact that CEMP-rs stars exhibit O and Mg enhancements, we conclude that extremely hot conditions prevailed during the thermal pulses of the contaminating AGB stars. Finally, we argue that most CEMP-no stars (with no overabundances for the neutron-capture elements) are likely the extremely metal-poor counterparts of CEMP neutron-capture-rich stars. We also show that the C enhancement in CEMP-no stars declines with metallicity at extremely low metallicity ([Fe/H]~< -3.2). This trend is not predicted by any of the current AGB models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا