ترغب بنشر مسار تعليمي؟ اضغط هنا

The faint radio sky: radio astronomy becomes mainstream

383   0   0.0 ( 0 )
 نشر من قبل Paolo Padovani
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paolo Padovani




اسأل ChatGPT حول البحث

Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall big picture astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.



قيم البحث

اقرأ أيضاً

278 - P. Padovani 2015
We study the Extended Chandra Deep Field South (E-CDFS) Very Large Array sample, which reaches a flux density limit at 1.4 GHz of 32.5 microJy at the field centre and redshift ~ 4, and covers ~ 0.3 deg^2. Number counts are presented for the whole sam ple while the evolutionary properties and luminosity functions are derived for active galactic nuclei (AGN). The faint radio sky contains two totally distinct AGN populations, characterised by very different evolutions, luminosity functions, and Eddington ratios: radio-quiet (RQ)/radiative-mode, and radio-loud/jet-mode AGN. The radio power of RQ AGN evolves ~ (1+z)^2.5, similarly to star-forming galaxies, while the number density of radio-loud ones has a peak at ~ 0.5 and then declines at higher redshifts. The number density of radio-selected RQ AGN is consistent with that of X-ray selected AGN, which shows that we are sampling the same population. The unbiased fraction of radiative-mode RL AGN, derived from our own and previously published data, is a strong function of radio power, decreasing from ~ 0.5 at P_1.4GHz ~ 10^24 W/Hz to ~ 0.04$ at P_1.4GHz ~ 10^22 W/Hz. Thanks to our enlarged sample, which now includes ~ 700 radio sources, we also confirm and strengthen our previous results on the source population of the faint radio sky: star-forming galaxies start to dominate the radio sky only below ~ 0.1 mJy, which is also where radio-quiet AGN overtake radio-loud ones.
131 - P. Padovani 2014
We present our very recent results on the sub-mJy radio source populations at 1.4 GHz based on the Extended Chandra Deep Field South VLA survey, which reaches ~ 30 {mu}Jy, with details on their number counts, evolution, and luminosity functions. The sub-mJy radio sky turns out to be a complex mix of star-forming galaxies and radio-quiet AGN evolving at a similar, strong rate and declining radio-loud AGN. While the well-known flattening of the radio number counts below 1 mJy is mostly due to star-forming galaxies, these sources and AGN make up an approximately equal fraction of the sub-mJy sky. Our results shed also light on a fifty-year-old issue, namely radio emission from radio-quiet AGN, and suggest that it is closely related to star formation, at least at z ~ 1.5 - 2. The implications of our findings for future, deeper radio surveys, including those with the Square Kilometre Array, are also discussed. One of the main messages, especially to non-radio astronomers, is that radio surveys are reaching such faint limits that, while previously they were mainly useful for radio quasars and radio galaxies, they are now detecting mostly star-forming galaxies and radio-quiet AGN, i.e., the bulk of the extragalactic sources studied in the infrared, optical, and X-ray bands.
A community meeting on the topic of Radio Astronomy in the LSST Era was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the t ime domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale, and radio and visible wavelength observations are part of the multi-wavelength approach needed to classify and understand these objects. Radio wavelengths are valuable because they are unaffected by dust obscuration and, for galaxies, contain contributions both from star formation and from active galactic nuclei. The workshop touched on several other topics, on which there was consensus including the placement of other LSST Deep Drilling Fields, inter-operability of software tools, and the challenge of filtering and exploiting the LSST data stream. There were also topics for which there was insufficient time for full discussion or for which no consensus was reached, which included the procedures for following up on LSST observations and the nature for future support of researchers desiring to use LSST data products.
We study the faint radio population using wide-field very long baseline interferometry (VLBI) observations of 2865 known radio sources in the Cosmic Evolution Survey (COSMOS) field. The main objective of the project was to determine where active gala ctic nuclei (AGN) are present. The combination of number of sources, sensitivity, angular resolution and area covered by this project are unprecedented. We have detected 468 radio sources, expected to be AGNs, with the Very Long Baseline Array (VLBA) at 1.4 GHz. This is, to date, the largest sample assembled of VLBI detected sources in the sub-mJy regime. The input sample was taken from previous observations with the Very Large Array (VLA). We present the catalogue with additional multiwavelength information. We find a detection fraction of 20%, considering only those sources from the input catalogue which were in principle detectable with the VLBA (2361). As a function of redshift, we see no evolution of the detection fraction over the redshift range 0.5<z<3. In addition, we find that faint radio sources typically have a greater fraction of their radio luminosity in a compact core: ~70% of the sub-mJy sources detected with the VLBA have more than half of their total radio luminosity in a VLBI-scale component, whereas this is true for only ~30% of the sources that are brighter than 10 mJy. This suggests that fainter radio sources differ intrinsically from brighter ones. Across our entire sample, we find the predominant morphological classification of the host galaxies of the VLBA detected sources to be early type (57%), although this varies with redshift and at z>1.5 we find that spiral galaxies become the most prevalent (48%). We demonstrate that wide-field VLBI observations, together with new calibration methods such as multi-source self-calibration and mosaicing, result in information which is difficult or impossible to obtain otherwise.
Ultra-deep radio surveys are an invaluable probe of dust-obscured star formation, but require a clear understanding of the relative contribution from radio AGN to be used to their fullest potential. We study the composition of the $mu$Jy radio popula tion detected in the Karl G. Jansky Very Large Array COSMOS-XS survey based on a sample of 1540 sources detected at 3 GHz over an area of $sim350text{arcmin}^2$. This ultra-deep survey consists of a single pointing in the well-studied COSMOS field at both 3 and 10 GHz and reaches RMS-sensitivities of $0.53$ and $0.41mu$Jy beam$^{-1}$, respectively. We find multi-wavelength counterparts for $97%$ of radio sources, based on a combination of near-UV/optical to sub-mm data, and through a stacking analysis at optical/near-infrared wavelengths we further show that the sources lacking such counterparts are likely to be high-redshift in nature (typical $zsim4-5$). Utilizing the multi-wavelength data over COSMOS, we identify AGN through a variety of diagnostics and find these to make up $23.2pm1.3%$ of our sample, with the remainder constituting uncontaminated star-forming galaxies. However, more than half of the AGN exhibit radio emission consistent with originating from star-formation, with only $8.8pm0.8%$ of radio sources showing a clear excess in radio luminosity. At flux densities of $sim30mu$Jy at 3 GHz, the fraction of star-formation powered sources reaches $sim90%$, and this fraction is consistent with unity at even lower flux densities. Overall, our findings imply that ultra-deep radio surveys such as COSMOS-XS constitute a highly effective means of obtaining clean samples of star-formation powered radio sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا