ﻻ يوجد ملخص باللغة العربية
We have investigated the complex multiwavelength evolution of GRO J1655-40 during the rise of its 2005 outburst. We detected two hard X-ray flares, the first one during the transition from the soft state to the ultra-soft state, and the second one in the ultra-soft state. The first X-ray flare coincided with an optically thin radio flare. We also observed a hint of increased radio emission during the second X-ray flare. To explain the hard flares without invoking a secondary emission component, we fit the entire data set with the eqpair model. This single, hybrid Comptonization model sufficiently fits the data even during the hard X-ray flares if we allow reflection fractions greater than unity. In this case, the hard X-ray flares correspond to a Comptonizing corona dominated by non-thermal electrons. The fits also require absorption features in the soft and ultra-soft state which are likely due to a wind. In this work we show that the wind and the optically thin radio flare co-exist. Finally, we have also investigated the radio to optical spectral energy distribution, tracking the radio spectral evolution through the quenching of the compact jet and rise of the optically thin flare, and interpreted all data using state transition models.
The spectrum from the black hole X-ray transient GRO J1655-40. obtained using the $Chandra$ High Energy Transmission Grating (HETG) in 2005 is notable as a laboratory for the study of warm absorbers, and for the presence of many lines from odd-$Z$ el
We present Swift observations of the black hole X-ray transient, GRO J1655-40, during the recent outburst. With its multiwavelength capabilities and flexible scheduling, Swift is extremely well-suited for monitoring the spectral evolution of such an
We report on the results of a detailed spectral analysis of 389 RXTE observations of the Galactic microquasar GRO J1655-40, performed during its 2005 outburst. The maximum luminosity reached during this outburst was 1.4 times higher than in the previ
GRO 1655-40, a well known black hole candidate, showed renewed X-ray activity in March 2005 after being dormant for almost eight years. It showed very prominent quasi-periodic oscillations. We analysed the data of two observations in this {it Rapid C
During its 2005 outburst, GRO J1655-40 was observed twice with the Chandra High Energy Transmission Grating Spectrometer; the second observation revealed a spectrum rich with ionized absorption lines from elements ranging from O to Ni (Miller et al.