ﻻ يوجد ملخص باللغة العربية
In this article we study the asymptotic behavior of solutions, in sense of global pullback attractors, of the evolution system $$ begin{cases} u_{tt} +etaDelta^2 u+a(t)Deltatheta=f(t,u), & t>tau, xinOmega, theta_t-kappaDelta theta-a(t)Delta u_t=0, & t>tau, xinOmega, end{cases} $$ subject to boundary conditions $$ u=Delta u=theta=0, t>tau, xinpartialOmega, $$ where $Omega$ is a bounded domain in $mathbb{R}^N$ with $Ngeqslant 2$, which boundary $partialOmega$ is assumed to be a $mathcal{C}^4$-hypersurface, $eta>0$ and $kappa>0$ are constants, $a$ is an Holder continuous function, $f$ is a dissipative nonlinearity locally Lipschitz in the second variable.
We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space R^n when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is establ
The existence of a pullback attractor is established for the singularly perturbed FitzHugh-Nagumo system defined on the entire space $R^n$ when external terms are unbounded in a phase space. The pullback asymptotic compactness of the system is proved
We study pullback attractors of non-autonomous non-compact dynamical systems generated by differential equations with non-autonomous deterministic as well as stochastic forcing terms. We first introduce the concepts of pullback attractors and asympto
This paper is concerned with pullback attractors of the stochastic p-Laplace equation defined on the entire space R^n. We first establish the asymptotic compactness of the equation in L^2(R^n) and then prove the existence and uniqueness of non-autono
We prove the existence and uniqueness of tempered random attractors for stochastic Reaction-Diffusion equations on unbounded domains with multiplicative noise and deterministic non-autonomous forcing. We establish the periodicity of the tempered attr