ﻻ يوجد ملخص باللغة العربية
We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxys lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.
We have used Galaxy Zoo DECaLS (GZD) to study strong and weak bars in disk galaxies. Out of the 314,000 galaxies in GZD, we created a volume-limited sample (0.01 < z < 0.05, Mr < -18.96) which contains 1,867 galaxies with reliable volunteer bar class
We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post merger galaxies. We
We present results from the first twelve months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170,000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Gal
Feedback from an active galactic nucleus (AGN) is often implicated as a mechanism that leads to the quenching of galactic star formation. However, AGN-driven quenching is challenging to reconcile with observations that AGN hosts tend to harbour equal
Does the environment of a galaxy directly influence the quenching history of a galaxy? Here we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo