ﻻ يوجد ملخص باللغة العربية
We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.
Cell-based biosensors constitute a fundamental tool in biotechnology, and their relevance has greatly increased in recent years as a result of a surging demand for reduced animal testing and for high-throughput and cost-effective in vitro screening p
Single photon avalanche diode (SPAD) arrays have proven themselves as serious candidates for time of flight positron emission tomography (PET). Discrete readout schemes mitigate the low-noise requirements of analog schemes and offer very fine control
The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, t
A microstructured graphitic 4x4 multielectrode array was embedded in a single crystal diamond substrate (4x4 {uG-SCD MEA) for real-time monitoring of exocytotic events from cultured chromaffin cells and adrenal slices. The current approach relies on
Active ring laser gyroscopes (RLG) operating on the principle of the optical Sagnac effect are preferred instruments for a range of applications, such as inertial guidance systems, seismology, and geodesy, that require both high bias stability and hi