ﻻ يوجد ملخص باللغة العربية
We prove a general homological stability theorem for certain families of groups equipped with product maps, followed by two theorems of a new kind that give information about the last two homology groups outside the stable range. (These last two unstable groups are the edge in our title.) Applying our results to automorphism groups of free groups yields a new proof of homological stability with an improved stable range, a description of the last unstable group up to a single ambiguity, and a lower bound on the rank of the penultimate unstable group. We give similar applications to the general linear groups of the integers and of the field of order 2, this time recovering the known stablility range. The results can also be applied to general linear groups of arbitrary principal ideal domains, symmetric groups, and braid groups. Our methods require us to use field coefficients throughout.
This paper studies the homology and cohomology of the Temperley-Lieb algebra TL_n(a), interpreted as appropriate Tor and Ext groups. Our main result applies under the common assumption that a=v+v^{-1} for some unit v in the ground ring, and states th
A well-known question by Gromov asks whether the vanishing of the simplicial volume of oriented closed connected aspherical manifolds implies the vanishing of the Euler characteristic. We study vario
Building on work of Stolz, we prove for integers $0 le d le 3$ and $k>232$ that the boundaries of $(k-1)$-connected, almost closed $(2k+d)$-manifolds also bound parallelizable manifolds. Away from finitely many dimensions, this settles longstanding q
We consider the topological category of $h$-cobordisms between manifolds with boundary and compare its homotopy type with the standard $h$-cobordism space of a compact smooth manifold.
In 1962, Wall showed that smooth, closed, oriented, $(n-1)$-connected $2n$-manifolds of dimension at least $6$ are classified up to connected sum with an exotic sphere by an algebraic refinement of the intersection form which he called an $n$-space.