ترغب بنشر مسار تعليمي؟ اضغط هنا

On the edge of the stable range

73   0   0.0 ( 0 )
 نشر من قبل Richard Hepworth
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Richard Hepworth




اسأل ChatGPT حول البحث

We prove a general homological stability theorem for certain families of groups equipped with product maps, followed by two theorems of a new kind that give information about the last two homology groups outside the stable range. (These last two unstable groups are the edge in our title.) Applying our results to automorphism groups of free groups yields a new proof of homological stability with an improved stable range, a description of the last unstable group up to a single ambiguity, and a lower bound on the rank of the penultimate unstable group. We give similar applications to the general linear groups of the integers and of the field of order 2, this time recovering the known stablility range. The results can also be applied to general linear groups of arbitrary principal ideal domains, symmetric groups, and braid groups. Our methods require us to use field coefficients throughout.



قيم البحث

اقرأ أيضاً

This paper studies the homology and cohomology of the Temperley-Lieb algebra TL_n(a), interpreted as appropriate Tor and Ext groups. Our main result applies under the common assumption that a=v+v^{-1} for some unit v in the ground ring, and states th at the homology and cohomology vanish up to and including degree (n-2). To achieve this we simultaneously prove homological stability and compute the stable homology. We show that our vanishing range is sharp when n is even. Our methods are inspired by the tools and techniques of homological stability for families of groups. We construct and exploit a chain complex of planar injective words that is analogous to the complex of injective words used to prove stability for the symmetric groups. However, in this algebraic setting we encounter a novel difficulty: TL_n(a) is not flat over TL_m(a) for m<n, so that Shapiros lemma is unavailable. We resolve this difficulty by constructing what we call inductive resolutions of the relevant modules. Vanishing results for the homology and cohomology of Temperley-Lieb algebras can also be obtained from existence of the Jones-Wenzl projector. Our own vanishing results are in general far stronger than these, but in a restricted case we are able to obtain additional vanishing results via existence of the Jones-Wenzl projector. We believe that these results, together with the second authors work on Iwahori-Hecke algebras, are the first time the techniques of homological stability have been applied to algebras that are not group algebras.
A well-known question by Gromov asks whether the vanishing of the simplicial volume of oriented closed connected aspherical manifolds implies the vanishing of the Euler characteristic. We study vario
Building on work of Stolz, we prove for integers $0 le d le 3$ and $k>232$ that the boundaries of $(k-1)$-connected, almost closed $(2k+d)$-manifolds also bound parallelizable manifolds. Away from finitely many dimensions, this settles longstanding q uestions of C.T.C. Wall, determines all Stein fillable homotopy spheres, and proves a conjecture of Galatius and Randal-Williams. Implications are drawn for both the classification of highly connected manifolds and, via work of Kreck and Krannich, the calculation of their mapping class groups. Our technique is to recast the Galatius and Randal-Williams conjecture in terms of the vanishing of a certain Toda bracket, and then to analyze this Toda bracket by bounding its $mathrm{H}mathbb{F}_p$-Adams filtrations for all primes $p$. We additionally prove new vanishing lines in the $mathrm{H}mathbb{F}_p$-Adams spectral sequences of spheres and Moore spectra, which are likely to be of independent interest. Several of these vanishing lines rely on an Appendix by Robert Burklund, which answers a question of Mathew about vanishing curves in $mathrm{BP} langle n rangle$-based Adams spectral sequences.
We consider the topological category of $h$-cobordisms between manifolds with boundary and compare its homotopy type with the standard $h$-cobordism space of a compact smooth manifold.
In 1962, Wall showed that smooth, closed, oriented, $(n-1)$-connected $2n$-manifolds of dimension at least $6$ are classified up to connected sum with an exotic sphere by an algebraic refinement of the intersection form which he called an $n$-space. In this paper, we complete the determination of which $n$-spaces are realizable by smooth, closed, oriented, $(n-1)$-connected $2n$-manifolds for all $n eq 63$. In dimension $126$ the Kervaire invariant one problem remains open. Along the way, we completely resolve conjectures of Galatius-Randal-Williams and Bowden-Crowley-Stipsicz, showing that they are true outside of the exceptional dimension $23$, where we provide a counterexample. This counterexample is related to the Witten genus and its refinement to a map of $mathbb{E}_infty$-ring spectra by Ando-Hopkins-Rezk. By previous work of many authors, including Wall, Schultz, Stolz and Hill-Hopkins-Ravenel, as well as recent joint work of Hahn with the authors, these questions have been resolved for all but finitely many dimensions, and the contribution of this paper is to fill in these gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا