ترغب بنشر مسار تعليمي؟ اضغط هنا

Double Compton and Cyclo-Synchrotron in Super-Eddington Disks, Magnetized Coronae, and Jets

58   0   0.0 ( 0 )
 نشر من قبل Jonathan C. McKinney
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an extension to the general relativistic radiation magnetohydrodynamic code HARMRAD to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature OPAL opacities as well as Thomson and Compton scattering. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically-arrested disks accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disk within a radius of $rsim 15r_g$ (gravitational radii) at a hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of $Tsim 10^9$K is $sim 100$ times higher than the disks black body temperature. Our results show the importance of double Compton and synchrotron in super-Eddington disks, magnetized coronae, and jets.



قيم البحث

اقرأ أيضاً

We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas-pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, modifying significantly the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behaviour depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodyna mic (GRRMHD) simulation of a spinning BH (spin $a/M=0.8$) accreting at $sim 50$ times Eddington shows a total efficiency $sim 50%$ when time-averaged and total efficiency $gtrsim 100%$ in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disk, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency $sim 40%$ on the horizon and BZ efficiency $sim 5%$ by $rsim 400r_g$ (gravitational radii) via absorption by the wind. Importantly, radiation escapes at $rsim 400r_g$ with efficiency $etaapprox 15%$ (luminosity $Lsim 50L_{rm Edd}$), similar to $etaapprox 12%$ for a Novikov-Thorne thin disk and beyond $etalesssim 1%$ seen in prior GRRMHD simulations or slim disk theory. Our simulations show how BH spin, magnetic field, and jet mass-loading affect the radiative and jet efficiencies of super-Eddington accretion.
We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets which are characterized by their dominant type of energy, namely internal, kinetic, or magnetic. Each model is threaded by a helic al magnetic field with a pitch angle of $45^circ$ and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of $26^circ$ are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.
65 - J. Neilsen , F. Rahoui , J. Homan 2016
During its 2005 outburst, GRO J1655-40 was observed at high spectral resolution with the Chandra HETGS, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind -- apparently too hot, too dense, and too close t o the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). But this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley & Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this hypersoft state are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.
We use global three dimensional radiation magneto-hydrodynamical simulations to study accretion disks onto a $5times 10^8M_{odot}$ black hole with accretion rates varying from $sim 250L_{Edd}/c^2$ to $1500 L_{Edd}/c^2$. We form the disks with torus c entered at $50-80$ gravitational radii with self-consistent turbulence initially generated by the magneto-rotational instability. We study cases with and without net vertical magnetic flux. The inner regions of all disks have radiation pressure $sim 10^4-10^6$ times the gas pressure. Non-axisymmetric density waves that steepen into spiral shocks form as gas flows towards the black hole. In simulations without net vertical magnetic flux, Reynolds stress generated by the spiral shocks are the dominant mechanism to transfer angular momentum. Maxwell stress from MRI turbulence can be larger than the Reynolds stress only when net vertical magnetic flux is sufficiently large. Outflows are formed with speed $sim 0.1-0.4c$. When the accretion rate is smaller than $sim 500 L_{Edd}/c^2$, outflows start around $10$ gravitational radii and the radiative efficiency is $sim 5%-7%$ with both magnetic field configurations. With accretion rate reaching $1500 L_{Edd}/c^2$, most of the funnel region close to the rotation axis becomes optically thick and the outflow only develops beyond $50$ gravitational radii. The radiative efficiency is reduced to $1%$. We always find the kinetic energy luminosity associated with the outflow is only $sim 15%-30%$ of the radiative luminosity. The mass flux lost in the outflow is $sim 15%-50%$ of the net mass accretion rates. We discuss implications of our simulation results on the observational properties of these disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا