ﻻ يوجد ملخص باللغة العربية
We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.
We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 mu m-wide Si strips with a full-frame read out at 20 kHz. Its use
We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet,
Single shot x-ray diffraction (XRD) experiments have been performed with a x-ray free electron laser (XFEL) under pulsed high magnetic fields up to 16 T generated with a nondestructive minicoil. The antiferromagnetic insulator phase in a perovskite m
We present a maximum-likelihood method for parameter estimation in terahertz time-domain spectroscopy. We derive the likelihood function for a parameterized frequency response function, given a pair of time-domain waveforms with known time-dependent
We have studied the magnetic field dependence of far-infrared active magnetic modes in a single ferroelectric domain BFO/ crystal at low temperature. The modes soften close to the critical field of 18.8,T along the [001] (pseudocubic) axis, where the