ترغب بنشر مسار تعليمي؟ اضغط هنا

Association schemes all of whose symmetric fusion schemes are integral

258   0   0.0 ( 0 )
 نشر من قبل Semin Oh
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we aim to characterize association schemes all of whose symmetric fusion schemes have only integral eigenvalues, and classify those obtained from a regular action of a finite group by taking its orbitals.



قيم البحث

اقرأ أيضاً

137 - Tao Feng , Fan Wu , Qing Xiang 2010
We construct twelve infinite families of pseudocyclic and non-amorphic association schemes, in which each nontrivial relation is a strongly regular graph. Three of the twelve families generalize the counterexamples to A. V. Ivanovs conjecture by Ikuta and Munemasa [15].
173 - Hiroshi Nozaki 2013
In this paper we characterize large regular graphs using certain entries in the projection matrices onto the eigenspaces of the graph. As a corollary of this result, we show that large association schemes become $P$-polynomial association schemes. Ou r results are summarized as follows. Let $G=(V,E)$ be a connected $k$-regular graph with $d+1$ distinct eigenvalues $k=theta_0>theta_1>cdots>theta_d$. Since the diameter of $G$ is at most $d$, we have the Moore bound [ |V| leq M(k,d)=1+k sum_{i=0}^{d-1}(k-1)^i. ] Note that if $|V|> M(k,d-1)$ holds, the diameter of $G$ is equal to $d$. Let $E_i$ be the orthogonal projection matrix onto the eigenspace corresponding to $theta_i$. Let $partial(u,v)$ be the path distance of $u,v in V$. Theorem. Assume $|V|> M(k,d-1)$ holds. Then for $x,y in V$ with $partial(x,y)=d$, the $(x,y)$-entry of $E_i$ is equal to [ -frac{1}{|V|}prod_{j=1,2,ldots,d, j e i} frac{theta_0-theta_j}{theta_i-theta_j}. ] If a symmetric association scheme $mathfrak{X}=(X,{R_i}_{i=0}^d)$ has a relation $R_i$ such that the graph $(X,R_i)$ satisfies the above condition, then $mathfrak{X}$ is $P$-polynomial. Moreover we show the dual version of this theorem for spherical sets and $Q$-polynomial association schemes.
65 - Eiichi Bannai , Da Zhao 2017
We classify the symmetric association schemes with faithful spherical embedding in 3-dimensional Euclidean space. Our result is based on previous research on primitive association schemes with $m_1 = 3$.
An association scheme is called quasi-thin if the valency of each its basic relation is one or two. A quasi-thin scheme is Kleinian if the thin residue of it forms a Klein group with respect to the relation product. It is proved that any Kleinian sch eme arises from near-pencil on~$3$ points, or affine or projective plane of order~$2$. The main result is that any non-Kleinian quasi-thin scheme a) is the two-orbit scheme of a suitable permutation group, and b) is characterized up to isomorphism by its intersection number array. An infinite family of Kleinian quasi-thin schemes for which neither a) nor b) holds is also constructed.
{Let ${Cal X}$ be a self-dual P-polynomial association scheme. Then there are at most 12 diagonal matrices $T$ such that $(PT)^3=I$. Moreover, all of the solutions for the classical infinite families of such schemes (including the Hamming scheme) are classified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا