ﻻ يوجد ملخص باللغة العربية
To evaluate a fitting of a statistical model to given data, calculating a conditional $p$ value by a Markov chain Monte Carlo method is one of the effective approaches. For this purpose, a Markov basis plays an important role because it guarantees the connectivity of the chain for unbiasedness of the estimation, and therefore is investigated in various settings such as incomplete tables or subtable sum constraints. In this paper, we consider the two-way change-point model for the ladder determinantal table, which is an extension of these two previous works. Our main result is based on the theory of Groebner basis for the distributive lattice. We give a numerical example for actual data.
Markov basis for statistical model of contingency tables gives a useful tool for performing the conditional test of the model via Markov chain Monte Carlo method. In this paper we derive explicit forms of Markov bases for change point models and bloc
It has been well-known that for two-way contingency tables with fixed row sums and column sums the set of square-free moves of degree two forms a Markov basis. However when we impose an additional constraint that the sum of a subtable is also fixed,
Vector Auto-Regressive (VAR) models capture lead-lag temporal dynamics of multivariate time series data. They have been widely used in macroeconomics, financial econometrics, neuroscience and functional genomics. In many applications, the data exhibi
Without imposing prior distributional knowledge underlying multivariate time series of interest, we propose a nonparametric change-point detection approach to estimate the number of change points and their locations along the temporal axis. We develo
The variance of noise plays an important role in many change-point detection procedures and the associated inferences. Most commonly used variance estimators require strong assumptions on the true mean structure or normality of the error distribution