ترغب بنشر مسار تعليمي؟ اضغط هنا

Van der Waals universality in homonuclear atom-dimer elastic collisions

232   0   0.0 ( 0 )
 نشر من قبل Panagiotis Giannakeas
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The universal aspects of atom-dimer elastic collisions are investigated within the framework of Faddeev equations. The two-body interactions between the neutral atoms are approximated by the separable potential approach. Our analysis considers a pure van der Waals potential tail as well as soft-core van der Waals interactions permitting us in this manner to address the universally general features of atom-dimer resonant spectra. In particular, we show that the atom-dimer resonances are solely associated with the {it excited} Efimov states. Furthermore, the positions of the corresponding resonances for a soft-core potentials with more than 5 bound states are in good agreement with the corresponding results from an infinitely deep pure van der Waals tail potential.



قيم البحث

اقرأ أيضاً

We study the collisional properties of an ultracold mixture of cesium atoms and dimers close to a Feshbach resonance near 550G in the regime of positive $s$-wave scattering lengths. We observe an atom-dimer loss resonance that is related to Efimovs s cenario of trimer states. The resonance is found at a value of the scattering length that is different from a previous observation at low magnetic fields. This indicates non-universal behavior of the Efimov spectrum for positive scattering lengths. We compare our observations with predictions from effective field theory and with a recent model based on the van der Waals interaction. We present additional measurements on pure atomic samples in order to check for the presence of a resonant loss feature related to an avalanche effect as suggested by observations in other atomic species. We could not confirm the presence of such a feature.
Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic m any-body states in such two-dimensional materials. Pure optical studies, the most obvious way to access the phase diagram of photogenerated excitons have been elusive. We observe several criticalities in photogenerated exciton ensembles hosted in MoSe2-WSe2 heterostacks with respect to photoluminescence intensity, linewidth, and temporal coherence pointing towards the transition to a coherent quantum state. For this state, the occupation is 100 percent and the exciton diffusion length is increased. The phenomena survive above 10 kelvin, consistent with the predicted critical condensation temperature. Our study provides a first phase-diagram of many-body interlayer exciton states including Bose Einstein condensation.
We consider thermodynamics of the van der Waals fluid of quantum systems. We derive general relations of thermodynamic functions and parameters of any ideal gas and the corresponding van der Waals fluid. This provides unambiguous generalization of th e classical van der Waals theory to quantum statistical systems. As an example, we apply the van der Waals fluid with fermi statistics to characterize the liquid-gas critical point in nuclear matter. We also introduce the Bose-Einstein condensation in the relativistic van der Waals boson gas, and argue, that it exhibits two-phase structure separated in space.
122 - A. Kievsky , M. Gattobigio 2012
We investigate universal behavior in elastic atom-dimer scattering below the dimer breakup threshold calculating the atom-dimer effective-range function $akcotdelta$. Using the He-He system as a reference, we solve the Schrodinger equation for a fami ly of potentials having different values of the two-body scattering length $a$ and we compare our results to the universal zero-range form deduced by Efimov, $akcotdelta=c_1(ka)+c_2(ka)cot[s_0ln(kappa_*a)+phi(ka)]$, for selected values of the three-body parameter $kappa_*$. Using the parametrization of the universal functions $c_1,c_2,phi$ given in the literature, a good agreement with the universal formula is obtained after introducing a particular type of finite-range corrections. Furthermore, we show that the same parametrization describes a very different system: nucleon-deuteron scattering below the deuteron breakup threshold. Our analysis confirms the universal character of the process, and relates the pole energy in the effective-range function of nucleon-deuteron scattering to the three-body parameter $kappa_*$.
Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron unce rtainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on $^{39}$K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا