ترغب بنشر مسار تعليمي؟ اضغط هنا

Reenactment for Read-Committed Snapshot Isolation

57   0   0.0 ( 0 )
 نشر من قبل Boris Glavic
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

The isolation level Multiversion Read Committed (RC), offered by many database systems, is known to trade consistency for increased transaction throughput. Sometimes, transaction workloads can be safely executed under RC obtaining the perfect isolati on of serializability at the lower cost of RC. To identify such cases, we introduce an expressive model of transaction programs to better reason about the serializability of transactional workloads. We develop tractable algorithms to decide whether any possible schedule of a workload executed under RC is serializable (referred to as the robustness problem). Our approach yields robust subsets that are larger than those identified by previous methods. We provide experimental evidence that workloads that are robust against RC can be evaluated faster under RC compared to stronger isolation levels. We discuss techniques for making workloads robust against RC by promoting selective read operations to updates. Depending on the scenario, the performance improvements can be considerable. Robustness testing and safely executing transactions under the lower isolation level RC can therefore provide a direct way to increase transaction throughput without changing DBMS internals.
Debugging transactions and understanding their execution are of immense importance for developing OLAP applications, to trace causes of errors in production systems, and to audit the operations of a database. However, debugging transactions is hard f or several reasons: 1) after the execution of a transaction, its input is no longer available for debugging, 2) internal states of a transaction are typically not accessible, and 3) the execution of a transaction may be affected by concurrently running transactions. We present a debugger for transactions that enables non-invasive, post-mortem debugging of transactions with provenance tracking and supports what-if scenarios (changes to transaction code or data). Using reenactment, a declarative replay technique we have developed, a transaction is replayed over the state of the DB seen by its original execution including all its interactions with concurrently executed transactions from the history. Importantly, our approach uses the temporal database and audit logging capabilities available in many DBMS and does not require any modifications to the underlying database system nor transactional workload.
Snapshot semantics is widely used for evaluating queries over temporal data: temporal relations are seen as sequences of snapshot relations, and queries are evaluated at each snapshot. In this work, we demonstrate that current approaches for snapshot semantics over interval-timestamped multiset relations are subject to two bugs regarding snapshot aggregation and bag difference. We introduce a novel temporal data model based on K-relations that overcomes these bugs and prove it to correctly encode snapshot semantics. Furthermore, we present an efficient implementation of our model as a database middleware and demonstrate experimentally that our approach is competitive with native implementations and significantly outperforms such implementations on queries that involve aggregation.
In recent years, emerging hardware storage technologies have focused on divergent goals: better performance or lower cost-per-bit of storage. Correspondingly, data systems that employ these new technologies are optimized either to be fast (but expens ive) or cheap (but slow). We take a different approach: by combining multiple tiers of fast and low-cost storage technologies within the same system, we can achieve a Pareto-efficient balance between performance and cost-per-bit. This paper presents the design and implementation of PrismDB, a novel log-structured merge tree based key-value store that exploits a full spectrum of heterogeneous storage technologies (from 3D XPoint to QLC NAND). We introduce the notion of read-awareness to log-structured merge trees, which allows hot objects to be pinned to faster storage, achieving better tiering and hot-cold separation of objects. Compared to the standard use of RocksDB on flash in datacenters today, PrismDBs average throughput on heterogeneous storage is 2.3$times$ faster and its tail latency is more than an order of magnitude better, using hardware than is half the cost.
92 - Liang Li , Guoren Wang , Gang Wu 2018
In-memory databases (IMDBs) are gaining increasing popularity in big data applications, where clients commit updates intensively. Specifically, it is necessary for IMDBs to have efficient snapshot performance to support certain special applications ( e.g., consistent checkpoint, HTAP). Formally, the in-memory consistent snapshot problem refers to taking an in-memory consistent time-in-point snapshot with the constraints that 1) clients can read the latest data items and 2) any data item in the snapshot should not be overwritten. Various snapshot algorithms have been proposed in academia to trade off throughput and latency, but industrial IMDBs such as Redis adhere to the simple fork algorithm. To understand this phenomenon, we conduct comprehensive performance evaluations on mainstream snapshot algorithms. Surprisingly, we observe that the simple fork algorithm indeed outperforms the state-of-the-arts in update-intensive workload scenarios. On this basis, we identify the drawbacks of existing research and propose two lightweight improvements. Extensive evaluations on synthetic data and Redis show that our lightweight improvements yield better performance than fork, the current industrial standard, and the representative snapshot algorithms from academia. Finally, we have opensourced the implementation of all the above snapshot algorithms so that practitioners are able to benchmark the performance of each algorithm and select proper methods for different application scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا