A metric for wettability at the nanoscale


الملخص بالإنكليزية

Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid are nearly spherical away from interfaces with solids, and any local deformations due to molecular-scale surface interactions are negligible. Studies of wetting phenomena, therefore, typically assume that a liquid on a surface adopts the shape of a spherical cap. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets gradually assume distorted shapes that no longer comply with our conventional, macroscopic conception of a drop. In this regime, the contact angle becomes ambiguous, and it is unclear how to parametrize a liquids affinity for a surface. A scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink, in agreement with theoretical predictions. Ultimately, the nanoscale liquid flattens out to form layer-like molecular assemblies, instead of droplets, at the solid surface. For the lack of a consistent contact angle at small scales, we introduce a droplets adsorption energy density as a new metric for a liquids affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is properly included.

تحميل البحث