ﻻ يوجد ملخص باللغة العربية
We present $sim$100 pc resolution Hubble Space Telescope H$alpha$ images of 10 galaxies from the DYnamics of Newly-Assembled Massive Objects (DYNAMO) survey of low-$z$ turbulent disk galaxies, and use these to undertake the first detailed systematic study of the effects of resolution and clump clustering on observations of clumps in turbulent disks. In the DYNAMO-{em HST} sample we measure clump diameters spanning the range $d_{clump} sim 100-800$~pc, and individual clump star formation rates as high as $sim5$~M$_{odot}$~yr$^{-1}$. DYNAMO clumps have very high SFR surface densities, $Sigma_{SFR}sim 15$~M$_{odot}$~yr$^{-1}$~kpc$^{-2}$, $sim100times$ higher than in H{sc ii} regions of nearby spirals. Indeed, SFR surface density provides a simple dividing line between massive star forming clumps and local star forming regions, where massive star forming clumps have $Sigma_{SFR}> 0.5$~M$_{odot}$~yr$^{-1}$~kpc$^{-2}$. When degraded to match the observations of galaxies in $zsim 1-3$ surveys, DYNAMO galaxies are similar in morphology and measured clump properties to clumpy galaxies observed in the high-$z$ Universe. Emission peaks in the simulated high-redshift maps typically correspond to multiple clumps in full resolution images. This clustering of clumps systematically increases the apparent size and SFR of clumps in 1~kpc resolution maps, and decreases the measured SFR surface density of clumps by as much as a factor of 20$times$. From these results we can infer that clump clustering is likely to strongly effect the measured properties of clumps in high-$z$ galaxies, which commonly have kiloparsec scale resolution.
We perform a suite of 3D radiation hydrodynamics simulations of photoevaporation of molecular gas clumps illuminated by external massive stars. We study the fate of solar-mass clumps and derive their lifetimes with varying the gas metallicity over a
We study the evolution of dense clumps and provide argument that the existence of the clumps is not limited by the crossing time of the clump. We claim that the lifetimes of the clumps are determined by the turbulent motions on larger scale and predi
The azimuthal substructure observed in some debris disks, as exemplified by epsilon Eridani, is usually attributed to resonances with embedded planets. In a standard scenario, the Poynting-Robertson force, possibly enhanced by the stellar wind drag,
We tested the validity of the three Larson relations in a sample of 213 massive clumps selected from the Herschel Hi-GAL survey and combined with data from the MALT90 survey of 3mm emission lines. The clumps have been divided in 5 evolutionary stages
Systematic surveys of massive clumps have been carried out to study the conditions leading to the formation of massive stars. These clumps are typically at large distances and unresolved, so their physical properties cannot be reliably derived from t