ﻻ يوجد ملخص باللغة العربية
Quantum-mechanical ab initio calculations are performed to elucidate the vibrational spectroscopic features of a common irradiation-induced defect in diamond, i.e. the neutral vacancy. Raman spectra are computed analytically through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach as a function of both different defect spin states and defect concentration. The experimental Raman features of defective diamond located in the 400-1300 cm-1 spectral range, i.e. below the first-order line of pristine diamond at 1332 cm-1 , are well reproduced, thus corroborating the picture according to which, at low damage densities, this spectral region is mostly affected by non-graphitic sp3 defects. No peaks above 1332 cm-1 are found, thus ruling out previous tentative assignments of different spectral features (at 1450 and 1490 cm-1) to the neutral vacancy. The perturbation introduced by the vacancy to the thermal nuclear motion of carbon atoms in the defective lattice is discussed in terms of atomic anisotropic displacement parameters (ADPs), computed from converged lattice dynamics calculations.
We study the general problem of mixing for ab-initio quantum-mechanical problems. Guided by general mathematical principles and the underlying physics, we propose a multisecant form of Broydens second method for solving the self-consistent field equa
There is a continuous search for solid-state spin qubits operating at room temperature with excitation in the IR communication bandwidth. Recently we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin s
We investigate the pressure-induced metal-insulator transition from diamond to beta-tin in bulk Silicon, using quantum Monte Carlo (QMC) and density functional theory (DFT) approaches. We show that it is possible to efficiently describe many-body eff
The neutrally-charged silicon vacancy in diamond is a promising system for quantum technologies that combines high-efficiency, broadband optical spin polarization with long spin lifetimes (T2 ~ 1 ms at 4 K) and up to 90% of optical emission into its
The silicon-vacancy centre (SiV) in diamond has interesting vibronic features. We demonstrate that the zero phonon line position can be used to reliably identify the silicon isotope present in a single centre. This is of interest for quantum informat