ﻻ يوجد ملخص باللغة العربية
In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond-air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 {deg}C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 {deg}C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.
Due to their outstanding mechanical properties, diamond and diamond-like materials find significant technological applications ranging from well-established industrial fields (cutting tools, coatings, etc.) to more advanced mechanical devices as micr
We report on structural, magnetic and electronic properties of Co-implanted TiO2 rutile single crystals for different implantation doses. Strong ferromagnetism at room temperature and above is observed in TiO2 rutile plates after cobalt ion implantat
Explosive crystallization (EC) is often observed when using nanosecond-pulsed melt laser annealing (MLA) in amorphous silicon (Si) and germanium (Ge). The solidification velocity in EC is so fast that a diffusion-less crystallization can be expected.
Methods of optical dynamic nuclear polarization (DNP) open the door to the replenishable hyperpolarization of nuclear spins, boosting their NMR/MRI signature by orders of magnitude. Nanodiamond powder rich in negatively charged Nitrogen Vacancy (NV)
We present experimental results and numerical Finite Element analysis to describe surface swelling due to the creation of buried graphite-like inclusions in diamond substrates subjected to MeV ion implantation. Numerical predictions are compared to e