ﻻ يوجد ملخص باللغة العربية
A light yield of 20.4 $pm$ 0.8 photoelectrons/keV was achieved with an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin. This is by far the largest yield in the world achieved with CsI crystals. An energy threshold that is several times lower than the current dark matter experiments utilizing CsI(Tl) crystals may be achievable using this technique. Together with novel CsI crystal purification methods, the technique may be used to improve the sensitivities of dark matter and coherent elastic neutrino-nucleus scattering experiments. Also measured were the scintillation light decay constants of the undoped CsI crystal at both room temperature and 77 Kelvin. The results are consistent with those in the literature.
Future large water Cherenkov and scintillator detectors have been proposed for measurements of long baseline neutrino oscillations, proton decay, supernova and solar neutrinos. To ensure cost-effectiveness and optimize scientific reach, one of the cr
In this study, we evaluate and compare the pulse shape discrimination (PSD) performance of multipixel photon counters (MPPCs, also known as silicon photomultiphers - SiPMs) with that of a typical photomultiplier tube (PMT) when testing using CsI(Tl)
The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the
Liquid scintillators doped with metals are needed for a variety of measurements in nuclear and particle physics. Nanoparticles provide a mechanism to dope the scintillator and their unique optical properties could be used to enhance detection capabil
The aim of this paper is to fully characterize the new multi-anode photomultiplier tube R11265-103-M64, produced by Hamamatsu. Its high effective active area (77%), its pixel size, the low dark signal rate and the capability to detect single photon s