ﻻ يوجد ملخص باللغة العربية
LOFT-P is a concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area (>6 m^2, >10x RXTE), high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multi-messenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, technologies which have been recently greatly advanced during the ESA M3 study. Given the large community interested in LOFT (>800 supporters, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE (~2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that LOFT-P is feasible within a NASA probe-class mission budget.
The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong
High-time-resolution X-ray observations of compact objects provide direct access to strong field gravity, black hole masses and spins, and the equation of state of ultra-dense matter. LOFT, the large observatory for X-ray timing, is specifically desi
LOFT, the large observatory for X-ray timing, is a new mission concept competing with other four candidates for a launch opportunity in 2022-2024. LOFT will be performing high-time resolution X-ray observations of compact objects, combining for the f
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the
The Large Observatory for X-ray Timing (LOFT) is one of the four candidate ESA M3 missions considered for launch in the 2022 time-frame. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and