ﻻ يوجد ملخص باللغة العربية
A proof that almost all quantum systems have trap free (that is, free from local optima) landscapes is presented for a large and physically general class of quantum system. This result offers an explanation for why gradient methods succeed so frequently in quantum control in both theory and practice. The role of singular controls is analyzed using geometric tools in the case of the control of the propagator of closed finite dimension systems. This type of control field has been implicated as a source of landscape traps. The conditions under which singular controls can introduce traps, and thus interrupt the progress of a control optimization, are discussed and a geometrical characterization of the issue is presented. It is shown that a control being singular is not sufficient to cause a control optimization progress to halt and sufficient conditions for a trap free landscape are presented. It is further shown that the local surjectivity axiom of landscape analysis can be refined to the condition that the end-point map is transverse to each of the level sets of the fidelity function. This novel condition is shown to be sufficient for a quantum systems landscape to be trap free. The control landscape for a quantum system is shown to be trap free for all but a null set of Hamiltonians using a novel geometric technique based on the parametric transversality theorem. Numerical evidence confirming this is also presented. This result is the analogue of the work of Altifini, wherein it is shown that controllability holds for all but a null set of quantum systems in the dipole approximation. The presented results indicate that by-and-large limited control resources are the most physically relevant source of landscape traps.
We analyze a recent claim that almost all closed, finite dimensional quantum systems have trap-free (i.e., free from local optima) landscapes (B. Russell et.al. J. Phys. A: Math. Theor. 50, 205302 (2017)). We point out several errors in the proof whi
We present a comprehensive analysis of the landscape for full quantum-quantum control associated with the expectation value of an arbitrary observable of one quantum system controlled by another quantum system. It is shown that such full quantum-quan
We present an efficient method of calculating exact confidence intervals for the hypergeometric parameter. The method inverts minimum-width acceptance intervals after shifting them to make their endpoints nondecreasing while preserving their level. T
We investigate the control landscapes of closed, finite level quantum systems beyond the dipole approximation by including a polarizability term in the Hamiltonian. Theoretical analysis is presented for the $n$ level case and formulas for singular co
Transient gradual typing imposes run-time type tests that typically cause a linear slowdown in programs performance. This performance impact discourages the use of type annotations because adding types to a program makes the program slower. A virtual