ترغب بنشر مسار تعليمي؟ اضغط هنا

SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events

167   0   0.0 ( 0 )
 نشر من قبل Andrea Cuttone
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient.



قيم البحث

اقرأ أيضاً

Ambient temperatures are rising globally, with the greatest increases recorded at night. Concurrently, the prevalence of insufficient sleep is increasing in many populations, with substantial costs to human health and well-being. Even though nearly a third of the human lifespan is spent asleep, it remains unknown whether temperature and weather impact objective measures of sleep in real-world settings, globally. Here we link billions of sleep measurements from wearable devices comprising over 7 million nighttime sleep records across 68 countries to local daily meteorological data from 2015 to 2017. Rising nighttime temperatures shorten within-person sleep duration primarily through delayed onset, increasing the probability of insufficient sleep. The effect of temperature on sleep loss is substantially larger for residents from lower income countries and older adults, and females are affected more than are males. Nighttime temperature increases inflict the greatest sleep loss during summer and fall months, and we do not find evidence of short-term acclimatization. Coupling historical behavioral measurements with output from climate models, we project that climate change will further erode human sleep, producing substantial geographic inequalities. Our findings have significant implications for adaptation planning and illuminate a pathway through which rising temperatures may globally impact public health.
121 - Renza Iqbal 2021
This study delves into the research question: how does gender influence smartphone ownership and autonomy in using the internet among the youth in rural India? This paper explores the influence of local culture on smartphone ownership and autonomy th rough an ethnographic study among rural Indian youth by analysing the intersection of gender with other identity axes. The findings show that young peoples smartphone ownership and autonomy is shaped by their social and cultural setting, and could lead to various inequalities in their internet usage. This study shows that gender paves way for various disparities with regard to smartphone ownership and internet usage. Decolonisation of the understanding of smartphone ownership and internet usage patterns of the youth in the Global South suggests a reconsideration of the user experience designs and platform policies.
Hierarchical model fitting has become commonplace for case-control studies of cognition and behaviour in mental health. However, these techniques require us to formalise assumptions about the data-generating process at the group level, which may not be known. Specifically, researchers typically must choose whether to assume all subjects are drawn from a common population, or to model them as deriving from separate populations. These assumptions have profound implications for computational psychiatry, as they affect the resulting inference (latent parameter recovery) and may conflate or mask true group-level differences. To test these assumptions we ran systematic simulations on synthetic multi-group behavioural data from a commonly used multi-armed bandit task (reinforcement learning task). We then examined recovery of group differences in latent parameter space under the two commonly used generative modelling assumptions: (1) modelling groups under a common shared group-level prior (assuming all participants are generated from a common distribution, and are likely to share common characteristics); (2) modelling separate groups based on symptomatology or diagnostic labels, resulting in separate group-level priors. We evaluated the robustness of these approaches to variations in data quality and prior specifications on a variety of metrics. We found that fitting groups separately (assumptions 2), provided the most accurate and robust inference across all conditions. Our results suggest that when dealing with data from multiple clinical groups, researchers should analyse patient and control groups separately as it provides the most accurate and robust recovery of the parameters of interest.
139 - Donghan Yu , Yong Li , Fengli Xu 2017
In this paper we present the first population-level, city-scale analysis of application usage on smartphones. Using deep packet inspection at the network operator level, we obtained a geo-tagged dataset with more than 6 million unique devices that la unched more than 10,000 unique applications across the city of Shanghai over one week. We develop a technique that leverages transfer learning to predict which applications are most popular and estimate the whole usage distribution based on the Point of Interest (POI) information of that particular location. We demonstrate that our technique has an 83.0% hitrate in successfully identifying the top five popular applications, and a 0.15 RMSE when estimating usage with just 10% sampled sparse data. It outperforms by about 25.7% over the existing state-of-the-art approaches. Our findings pave the way for predicting which apps are relevant to a user given their current location, and which applications are popular where. The implications of our findings are broad: it enables a range of systems to benefit from such timely predictions, including operating systems, network operators, appstores, advertisers, and service providers.
The efficacy of sensor data in modern bridge condition evaluations has been undermined by inaccessible technologies. While the links between vibrational properties and structural health have been well established, high costs associated with specializ ed sensor networks have prevented the integration of such data with bridge management systems. In the last decade, researchers predicted that crowd-sourced mobile sensor data, collected ubiquitously and cheaply, will revolutionize our ability to maintain existing infrastructure; yet no such applications have successfully overcome the challenge of extracting useful information in the field with sufficient precision. Here we fill this knowledge gap by showing that critical physical properties of a real bridge can be determined accurately from everyday vehicle trip data. We collected smartphone data from controlled field experiments and UBER rides on the Golden Gate Bridge and developed an analytical method to recover modal properties, which paves the way for scalable, cost-effective structural health monitoring based on this abundant data class. Our results are consistent with a comprehensive study on the Golden Gate Bridge. We assess the benefit of continuous monitoring with reliability models and show that the inclusion of crowd-sourced data in a bridge maintenance plan can add over fourteen years of service (30% increase) to a bridge without additional costs. These results certify the immediate value of large-scale data sources for studying the health of existing infrastructure, whether the data are crowdsensed or generated by organized vehicle fleets such as ridesourcing companies or municipalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا