ﻻ يوجد ملخص باللغة العربية
The formation process of massive stars is not well understood, and advancement in our understanding benefits from high resolution observations and modelling of the gas and dust surrounding individual high-mass (proto)stars. Here we report sub-arcsecond (<1550 au) resolution observations of the young massive star G11.92-0.61 MM1 with the SMA and VLA. Our 1.3 mm SMA observations reveal consistent velocity gradients in compact molecular line emission from species such as CH$_3$CN, CH$_3$OH, OCS, HNCO, H$_2$CO, DCN and CH$_3$CH$_2$CN, oriented perpendicular to the previously reported bipolar molecular outflow from MM1. Modelling of the compact gas kinematics suggests a structure undergoing rotation around the peak of the dust continuum emission. The rotational profile can be well fit by a model of a Keplerian disc, including infall, surrounding an enclosed mass of 30-60M$_{odot}$, of which 2-3M$_{odot}$ is attributed to the disc. From modelling the CH$_3$CN emission, we determine that two temperature components, of 150 K and 230 K, are required to adequately reproduce the spectra. Our 0.9 and 3.0cm VLA continuum data exhibit an excess above the level expected from dust emission; the full centimetre-submillimetre wavelength spectral energy distribution of MM1 is well reproduced by a model including dust emission, an unresolved hypercompact H{i}{i} region, and a compact ionised jet. In combination, our results suggest that MM1 is an example of a massive proto-O star forming via disc accretion, in a similar way to that of lower mass stars.
We present high resolution ($sim$300 au) Atacama Large Millimeter/submillimeter Array (ALMA) observations of the massive young stellar object G11.92-0.61 MM 1. We resolve the immediate circumstellar environment of MM 1 in 1.3 mm continuum emission an
We present the highest angular resolution (20x15mas - 44x33au) Atacama Large Millimeter/sub-millimeter Array (ALMA) observations currently possible of the proto-O-star G17.64+0.16 in Band 6. The Cycle 5 observations with baselines out to 16km probes
We present 1.05 mm ALMA observations of the deeply embedded high-mass protocluster G11.92-0.61, designed to search for low-mass cores within the accretion reservoir of the massive protostars. Our ALMA mosaic, which covers an extent of ~0.7 pc at sub-
It is well established that Solar-mass stars gain mass via disk accretion, until the mass reservoir of the disk is exhausted and dispersed, or condenses into planetesimals. Accretion disks are intimately coupled with mass ejection via polar cavities,
We used ALMA to observe the star-forming region GGD27 at 1.14 mm with an unprecedented angular resolution, 40 mas (56 au) and sensitivity (0.002 Msun). We detected a cluster of 25 continuum sources, most of which are likely tracing disks around Class