ترغب بنشر مسار تعليمي؟ اضغط هنا

Mott dissociation of pions and kaons in hot, dense quark matter

146   0   0.0 ( 0 )
 نشر من قبل David Blaschke
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the Mott dissociation of pions and kaons within a Beth-Uhlenbeck approach based on the PNJL model, which allows for a unified description of bound, resonant and scattering states. Within this model we evaluate the temperature and chemical potential dependent modification of the phase shifts both in the pseudoscalar and scalar isovector meson channels for $N_f=2+1$ quark flavors. We show that the character change of the pseudoscalar bound states to resonances in the continuum at the Mott transition temperature is signaled by a jump of the phase shift at the threshold from $pi$ to zero, in accordance with the Levinson theorem. In particular, we demonstrate the importance of accounting for the scattering continuum states, which ensures that the total phase shift in each of the meson channels vanishes at high energies, thus eliminating mesonic correlations from the thermodynamics at high temperatures. In this way, we prove that the present approach provides a unified description of the transition from a meson gas to a quark-gluon plasma. We discuss the occurrence of an anomalous mode for mesons composed of quarks with unequal masses which is particularly pronounced for $K^+$ and $kappa^+$ states at finite densities a a possible mechanism to explain the horn effect for the $K^+/pi^+$ ratio in heavy-ion collisions.



قيم البحث

اقرأ أيضاً

In-medium valence-quark distributions of $pi^+$ and $K^+$ mesons in symmetric nuclear matter are studied by combining the Nambu--Jona-Lasinio model and the quark-meson coupling model. The in-medium properties of the current quarks, which are used as inputs for studying the in-medium pion and kaon properties in the Nambu--Jona-Lasinio model, are calculated within the quark-meson coupling model. The light-quark condensates, light-quark dynamical masses, pion and kaon decay constants, and pion- and kaon-quark coupling constants are found to decrease as nuclear density increases. The obtained valence quark distributions in vacuum for both the $pi^+$ and $K^+$ could reasonably describe the available experimental data over a wide range of Bjorken-$x$. The in-medium valence $u$-quark distribution in the $pi^+$ at $Q^2=16~mbox{GeV}^2$ is found to be almost unchanged compared to the in-vacuum case. However, the in-medium to in-vacuum ratios of both the valence $u$-quark and valence $s$-quark distributions of the $K^+$ meson at $Q^2=16~mbox{GeV}^2$ increase with nuclear matter density, but show different $x$-dependence. Namely, the ratio for the valence $u$-quark distribution increases with $x$, while that for the valence $s$ quark decreases with $x$. These features are enhanced at higher density regions.
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu- Jona Lasinio (NJL) model. The estimation of t he transport coefficients is made using a quasiparticle approach of solving the Boltzmann kinetic equation within the relaxation time approximation. The transition rates are calculated in a manifestly covariant manner to estimate the thermal-averaged cross sections for quark-quark and quark-antiquark scattering. The calculations are performed for finite chemical potential also. Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum at the Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity to entropy density, on the other hand, decreases with temperature with a sharp decrease near the critical temperature, and vanishes beyond it. At finite chemical potential, however, it increases slowly with temperature beyond the Mott temperature. The coefficient of thermal conductivity also shows a minimum at the critical temperature.
We investigate chiral symmetry breaking and strong CP violation effects in the phase diagram of strongly interacting matter. We demonstrate the effect of strong CP violating terms on the phase structure at finite temperature and densities in a 3-flav or Nambu-Jona-Lasinio (NJL) model including the Kobayashi-Maskawa-tHooft (KMT) determinant term. This is investigated using an explicit structure for the ground state in terms of quark-antiquark condensates for both in the scalar and the pseudoscalar channels. CP restoring transition with temperature at zero baryon density is found to be a second order transition at $theta = pi$ while the same at finite chemical potential and small temperature turns out to be a first order transition. Within the model, the tri-critical point turns out to be $(T_c,mu_c)simeq(273,94)$ MeV at $theta = pi$ for such a transition.
An important first step in the program of hadronization of chiral quark models is the bosonization in meson and diquark channels. This procedure is presented at finite temperatures and chemical potentials for the SU(2) flavor case of the NJL model wi th special emphasis on the mixing between scalar meson and scalar diquark modes which occurs in the 2SC color superconducting phase. The thermodynamic potential is obtained in the gaussian approximation for the meson and diquark fields and it is given the Beth-Uhlenbeck form. This allows a detailed discussion of bound state dissociation in hot, dense matter (Mott effect) in terms of the in-medium scattering phase shift of two-particle correlations. It is shown for the case without meson-diquark mixing that the phase shift can be separated into a continuum and a resonance part. In the latter, the Mott transition manifests itself by a change of the phase shift at threshold by pi in accordance with Levinsons theorem, when a bound state transforms to a resonance in the scattering continuum. The consequences for the contribution of pionic correlations to the pressure are discussed by evaluating the Beth-Uhlenbeck equation of state in different approximations. A similar discussion is performed for the scalar diquark channel in the normal phase. Further developments and applications of the developed approach are outlined.
We investigate chiral symmetry breaking and strong CP violation effects on the phase diagram of strongly interacting matter in presence of a constant magnetic field. The effect of magnetic field and strong CP violating term on the phase structure at finite temperature and density is studied within a three flavor Nambu-Jona-Lasinio (NJL) model including the Kobayashi-Maskawa-tHooft (KMT) determinant term. This is investigated using an explicit variational ansatz for ground state with quark anti-quark pairs leading to condensates both in scalar and pseudoscalar channels. Magnetic field enhances the condensate in both the channels. Inverse magnetic catalysis for CP transition at finite chemical potential is seen for zero temperature and for small magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا