ﻻ يوجد ملخص باللغة العربية
The group focused on a model problem of idealised moist air convection in a single column of atmosphere. Height, temperature and moisture variables were chosen to simplify the mathematical representation (along the lines of the Boussinesq approximation in a height variable defined in terms of pressure). This allowed exact simple solutions of the numerical and partial differential equation problems to be found. By examining these, we identify column behaviour, stability issues and explore the feasibility of a more general solution process.
Multi-fluid models have recently been proposed as an approach to improving the representation of convection in weather and climate models. This is an attractive framework as it is fundamentally dynamical, removing some of the assumptions of mass-flux
A single-column model (SCM) is constructed in the regional climate model RegCM4. The evolution of a dry convection boundary layer (DCBL) is used to evaluate this SCM and compare four planetary boundary layer (PBL) schemes, the Holtslag-Boville scheme
Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their inte
Turbulent mixing processes in deep alpine Lake Garda (I) have not extensively been observed. Knowledge about drivers of turbulent fluxes are important for insights in the transport of matter, nutrients and pollutants, in the lake and in natural water
The exergy of the dry atmosphere can be considered as another aspect of the meteorological theories of available energies. The local and global properties of the dry available enthalpy function, also called flow exergy, were investigated in a previou