ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Resolution Image Compression with Recurrent Neural Networks

113   0   0.0 ( 0 )
 نشر من قبل Nick Johnston
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a set of full-resolution lossy image compression methods based on neural networks. Each of the architectures we describe can provide variable compression rates during deployment without requiring retraining of the network: each network need only be trained once. All of our architectures consist of a recurrent neural network (RNN)-based encoder and decoder, a binarizer, and a neural network for entropy coding. We compare RNN types (LSTM, associative LSTM) and introduce a new hybrid of GRU and ResNet. We also study one-shot versus additive reconstruction architectures and introduce a new scaled-additive framework. We compare to previous work, showing improvements of 4.3%-8.8% AUC (area under the rate-distortion curve), depending on the perceptual metric used. As far as we know, this is the first neural network architecture that is able to outperform JPEG at image compression across most bitrates on the rate-distortion curve on the Kodak dataset images, with and without the aid of entropy coding.



قيم البحث

اقرأ أيضاً

A large fraction of Internet traffic is now driven by requests from mobile devices with relatively small screens and often stringent bandwidth requirements. Due to these factors, it has become the norm for modern graphics-heavy websites to transmit l ow-resolution, low-bytecount image previews (thumbnails) as part of the initial page load process to improve apparent page responsiveness. Increasing thumbnail compression beyond the capabilities of existing codecs is therefore a current research focus, as any byte savings will significantly enhance the experience of mobile device users. Toward this end, we propose a general framework for variable-rate image compression and a novel architecture based on convolutional and deconvolutional LSTM recurrent networks. Our models address the main issues that have prevented autoencoder neural networks from competing with existing image compression algorithms: (1) our networks only need to be trained once (not per-image), regardless of input image dimensions and the desired compression rate; (2) our networks are progressive, meaning that the more bits are sent, the more accurate the image reconstruction; and (3) the proposed architecture is at least as efficient as a standard purpose-trained autoencoder for a given number of bits. On a large-scale benchmark of 32$times$32 thumbnails, our LSTM-based approaches provide better visual quality than (headerless) JPEG, JPEG2000 and WebP, with a storage size that is reduced by 10% or more.
We introduce a stop-code tolerant (SCT) approach to training recurrent convolutional neural networks for lossy image compression. Our methods introduce a multi-pass training method to combine the training goals of high-quality reconstructions in area s around stop-code masking as well as in highly-detailed areas. These methods lead to lower true bitrates for a given recursion count, both pre- and post-entropy coding, even using unstructured LZ77 code compression. The pre-LZ77 gains are achieved by trimming stop codes. The post-LZ77 gains are due to the highly unequal distributions of 0/1 codes from the SCT architectures. With these code compressions, the SCT architecture maintains or exceeds the image quality at all compression rates compared to JPEG and to RNN auto-encoders across the Kodak dataset. In addition, the SCT coding results in lower variance in image quality across the extent of the image, a characteristic that has been shown to be important in human ratings of image quality
In recent years, the image and video coding technologies have advanced by leaps and bounds. However, due to the popularization of image and video acquisition devices, the growth rate of image and video data is far beyond the improvement of the compre ssion ratio. In particular, it has been widely recognized that there are increasing challenges of pursuing further coding performance improvement within the traditional hybrid coding framework. Deep convolution neural network (CNN) which makes the neural network resurge in recent years and has achieved great success in both artificial intelligent and signal processing fields, also provides a novel and promising solution for image and video compression. In this paper, we provide a systematic, comprehensive and up-to-date review of neural network based image and video compression techniques. The evolution and development of neural network based compression methodologies are introduced for images and video respectively. More specifically, the cutting-edge video coding techniques by leveraging deep learning and HEVC framework are presented and discussed, which promote the state-of-the-art video coding performance substantially. Moreover, the end-to-end image and video coding frameworks based on neural networks are also reviewed, revealing interesting explorations on next generation image and video coding frameworks/standards. The most significant research works on the image and video coding related topics using neural networks are highlighted, and future trends are also envisioned. In particular, the joint compression on semantic and visual information is tentatively explored to formulate high efficiency signal representation structure for both human vision and machine vision, which are the two dominant signal receptor in the age of artificial intelligence.
133 - David Cox 2016
We present a self-contained system for constructing natural language models for use in text compression. Our system improves upon previous neural network based models by utilizing recent advances in syntactic parsing -- Googles SyntaxNet -- to augmen t character-level recurrent neural networks. RNNs have proven exceptional in modeling sequence data such as text, as their architecture allows for modeling of long-term contextual information.
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model f or adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا