ﻻ يوجد ملخص باللغة العربية
Recent experiments performed on cuprates and alkali-doped fullerides have demonstated that key signatures of superconductivity can be induced above the equilibrium critical temperature by optical modulation. These observations in disparate physical systems may indicate a general underlying mechanism. Multiple theories have been proposed, but these either consider specific features, such as competing instabilities, or focus on conventional BCS-type superconductivity. Here we show that periodic driving can enhance electron pairing in strongly-correlated systems. Focusing on the strongly-repulsive limit of the doped Hubbard model, we investigate in-gap, spatially inhomogeneous, on-site modulations. We demonstrate that such modulations substantially reduce electronic hopping, while simultaneously sustaining super-exchange interactions and pair hopping via driving-induced virtual charge excitations. We calculate real-time dynamics for the one-dimensional case, starting from zero and finite temperature initial states, and show that enhanced singlet--pair correlations emerge quickly and robustly in the out-of-equilibrium many-body state. Our results reveal a fundamental pairing mechanism that might underpin optically induced superconductivity in some strongly correlated quantum materials.
A periodically driven open three-level Dicke model is realized by resonantly shaking the pump field in an atom-cavity system. As an unambiguous signature, we demonstrate the emergence of a dynamical phase, in which the atoms periodically localize bet
We study the quantum dynamics of Bose-Einstein condensates when the scattering length is modulated periodically or quasi-periodically in time within the Bogoliubov framework. For the periodically driven case, we consider two protocols where the modul
We study a two dimensional super-lattice Bose-Hubbard model with alternating hoppings in the limit of strong on-site interactions. We evaluate the phase diagram of the model around half-filling using the density matrix renormalization group method an
Numerous theoretical and experimental studies have investigated the dynamics of cold atoms subjected to time periodic fields. Novel effects dependent on the amplitude and frequency of the driving field, such as Coherent Destruction of Tunneling have
Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be described by a time-independent effectiv