ﻻ يوجد ملخص باللغة العربية
We prove a nonlinear regularity principle in sequence spaces which produces universal estimates for special series defined therein. Some consequences are obtained and, in particular, we establish new inclusion theorems for multiple summing operators. Of independent interest, we settle all Grothendiecks type $(ell_{1},ell_{2})$ theorems for multilinear operators. We further employ the new regularity principle to solve the classification problem concerning all pairs of admissible exponents in the anisotropic Hardy--Littlewood inequality.
Let $X$ be a ball Banach function space on ${mathbb R}^n$. In this article, under the mild assumption that the Hardy--Littlewood maximal operator is bounded on the associated space $X$ of $X$, the authors prove that, for any $fin C_{mathrm{c}}^2({mat
We prove some refinements of concentration compactness principle for Sobolev space $W^{1,n}$ on a smooth compact Riemannian manifold of dimension $n$. As an application, we extend Aubins theorem for functions on $mathbb{S}^{n}$ with zero first order
Some Besov-type spaces $B^{s,tau}_{p,q}(mathbb{R}^n)$ can be characterized in terms of the behavior of the Fourier--Haar coefficients. In this article, the authors discuss some necessary restrictions for the parameters $s$, $tau$, $p$, $q$ and $n$ of
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first introduce the variable weak Hardy space on $mathbb R^n$, $W!H^{p(cdot)}(mathbb R^n)$, via