ﻻ يوجد ملخص باللغة العربية
We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.
The field of micro-cavity based frequency combs, or micro-combs[1,2], has recently witnessed many fundamental breakthroughs[3-19] enabled by the discovery of temporal cavity-solitons, self-localised waves sustained by a background of radiation usuall
With demonstrated applications ranging from metrology to telecommunications, soliton microresonator frequency combs have emerged over the past decade as a remarkable new technology. However, standard implementations only allow for the generation of c
Normal mode splitting is observed in a cavity QED system, in which nitrogen vacancy centers in diamond nanocrystals are coupled to whispering gallery modes in a silica microsphere. The composite nanocrystal-microsphere system takes advantage of the e
A tunable, all-optical, coupling method has been realized for a high-textit{Q} silica microsphere and an optical waveguide. By means of a novel optical nanopositioning method, induced thermal expansion of an asymmetric microsphere stem for laser powe
Electro-optic frequency combs were employed to rapidly interrogate an optomechanical sensor, demonstrating spectral resolution substantially exceeding that possible with a mode-locked frequency comb. Frequency combs were generated using an integrated