ﻻ يوجد ملخص باللغة العربية
We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localisation in the position space --- resulting from the choice of small values of the coin parameter and assisted by post-selection --- to engineer large-size coherent superpositions of distinguishable position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms.
The control of quantum walk is made particularly transparent when the initial state is expressed in terms of the eigenstates of the coin operator. We show that the group-velocity density acquires a much simpler form when expressed in this basis. This
Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen fo
We analyze two families of three-state quantum walks which show the localization effect. We focus on the role of the initial coin state and its coherence in controlling the properties of the quantum walk. In particular, we show that the description o
In this paper we unveil some features of a discrete-time quantum walk on the line whose coin depends on the temporal variable. After considering the most general form of the unitary coin operator, we focus on the role played by the two phase factors
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical eleme