ﻻ يوجد ملخص باللغة العربية
$P$-wave coupled channel effects arising from the $Dbar{D}$, $Dbar{D}^*+c.c.$, and $D^*bar{D}^*$ thresholds in $e^+e^-$ annihilations are systematically studied. We provide an exploratory study by solving the Lippmann-Schwinger equation with short-ranged contact potentials obtained in the heavy quark limit. These contact potentials can be extracted from the $P$-wave interactions in the $e^+e^-$ annihilations, and then be employed to investigate possible isosinglet $P$-wave hadronic molecules. In particular, such an investigation may provide information about exotic candidates with quantum numbers $J^{PC}=1^{-+}$. In the mass region of the $Dbar{D}$, $Dbar{D}^*+c.c.$, and $D^*bar{D}^*$ thresholds, there are two quark model bare states, i.e. the $psi(3770)$ and $psi(4040)$, which are assigned as $(1^3D_1)$ and $(3^1S_1)$ states, respectively. By an overall fit of the cross sections of $e^+e^-to Dbar{D}$, $Dbar{D}^*+c.c.$, $D^*bar{D}^*$, we determine the physical coupling constants to each channel and extract the pole positions of the $psi(3770)$ and $psi(4040)$. The deviation of the ratios from that in the heavy quark spin symmetry (HQSS) limit reflects the HQSS breaking effect due to the mass splitting between the $D$ and the $D^*$. Besides the two poles, we also find a pole a few MeV above the $Dbar{D}^*+c.c.$ threshold which can be related to the so-called $G(3900)$ observed earlier by BABAR and Belle. This scenario can be further scrutinized by measuring the angular distribution in the $D^*bar{D}^*$ channel with high luminosity experiments.
We calculate the cross section for the exclusive production of J^{PC}=0^{++} glueballs G_0 in association with the J/psi in e^+e^- annihilation using the pQCD factorization formalism. The required long-distance matrix element for the glueball is boun
In this work we study the e^{+}e^{-}tophi K^{+}K^{-} reaction. The leading order electromagnetic contributions to this process involve the gamma*phi K^{+}K^{-} vertex function with a highly virtual photon. We calculate this function at low energies u
The reactions of electron-positron to nucleon-antinucleon pairs are studied in a non-perturbative quark model. The work suggests that the two-step process, in which the primary quark-antiquark pair forms first a vector meson which in turn decays into
Electron-positron annihilation largely occurs in local thermal and chemical equilibrium after the neutrinos fall out of thermal equilibrium and during the Big Bang Nucleosynthesis (BBN) epoch. The effects of this process are evident in BBN yields as
Events with tagged photons in the process of electron-positron annihilation into hadrons are considered. The initial state radiation is suggested to scan the hadronic cross section with the energy. QED radiative corrections are taken into account. Th